
Deep Learning for Self-Driving Cars

Yash Vardhan Sharma, Sangam Jindal, Zong-Fu Hsieh

Department of Computer Science and Engineering

Texas A&M University

Abstract—This paper describes an implementation of “End to

End Learning for Self-Driving Cars” and some further

experimental results on different hyper-parameters.

Keywords—autonomy;

I. INTRODUCTION

Visionaries have always talked about a future where
technological advancement would make life much more
comfortable and safe. Self-Driving car is one such technological
marvel that would make commuting easier and safer for
everyone on the road. Many technology companies are working
to make this a reality. This paper attempts to explain one such
research from a technology company.

Nvidia Corporation published a paper titled “End to End
Learning for Self-Driving Cars” in 2016. This paper described a
self-driving car framework that enabled Nvidia to convert this
concept of self-driving into reality. We followed the paper
mentioned above to write our own implementation of the CNN
model and evaluated the network on Udacity’s open source
simulator for self-driving cars.

II. LITERATURE REVIEW

 Self-Driving cars have gained a lot of attention these days

from various technology companies and automobile

manufacturers in the world. A lot of research is going on in this

area. Some of the latest work include “Motion Planning of

Vehicle Obstacle Avoidance in Complex Traffic Scenarios”,

“Edge Enhanced Traffic Scene Segmentation Algorithm with

Deep Neural Network” etc.

 In this paper, we have tried to improve the existing research

by changing the parameters and introducing new layers in the

network.

III. PROBLEM FORMULATION

 Algorithms need to analyze a lot of parameters to run a car.
To achieve this high scale image analysis, we have
convolutional neural networks (CNN). The main idea is to
design a CNN that can take camera images from the car and
output values for steering angle, throttle, speed and brake.

 To measure accuracy of the network we have defined a
measure of accuracy for the convolutional neural network. We
call this measure “autonomy”. It is the amount of time the car
can follow the road.

IV. PROBLEM SOLUTION

 The paper mentioned above details one such CNN that takes
in images, steering angle, throttle, speed and brake. The car is
mounted with 3 cameras that takes images on the left, right and
front of the car. The other four car parameters steering angle,
throttle, speed and brake are recorded by the Nvidia Drive Px
hardware as described in the paper. For us, all these car
parameters were recorded from the Udacity’s simulator for self-
driving car.

 Figure 1 Training the Neural Network

This data was fed to a CNN. The CNN consists of a
normalization layer, 5 convolution layers and 3 fully connected
layers. The normalization layer performs hard coded
normalization that helps to avoid saturation and make gradients
work better. The first three convolution layers have a kernel of
5x5 and stride of 2x2 and the other 2 layers have a kernel of 3x3
with no stride. These layers help in feature extraction from the
input images. All the convolution layers use Exponential Linear
Unit “elu” as activation function. This activation helps to solve
the vanishing gradient problem in the network.

 After feature extraction from the 5 convolution layers, we
have a dropout layer with dropout 0.5. This helps the network to
learn more robust features and to avoid over-fitting. Next layer
after dropout is flatten. All the input matrices are flattened to
form a 1 dimensional array. This is done because the next layers
are fully connected.

 This is followed by 3 fully connected layers. The purpose of
these fully-connected layer to provide inverse of steering angle.
These layers function as a controller for the car. The layers have
different neurons that keep on decreasing with every layer. The
first layer has 100 neurons, second has 50 and the last has 1
neuron that contains the final steering angle value.

 The implementation has two files model.py and drive.py.
The model.py file contains source code the generates a Keras
model that is of type “.h5”. The CNN is implemented using
Keras library. Firstly, the data is loaded in a data frame using
pandas. Here we ignore other car parameters and just take in
steering angle. This data is then split into test and train data using
train_test_split in sklearn.

 Figure 2 Convolutional Neural Network Architecture

 After loading the data, the model is built using Keras
functions. Once the model is built, it is compiled. In addition to
compiling and fitting the model, we save checkpoints after every
epoch. This gives us a list of models. The checkpoints are saved
using ModelCheckpoint method with auto mode so that the most
useful models are saved rather than saving all the models.

 We use mean squared error as our loss function and adam
optimizer for gradient descent. These parameters are passed
while compiling the model.

 To train the model we use the fit method in Keras, we specify
training data in batch generator and testing data in the validation
data parameter of the method.

 The other file is drive.py that is used to send and receive data.
The idea is to have a circular loop where the simulator acts as a
server and our python program acts as a client. The server sends

picture from the camera. The difference between training and
testing is for training images from three cameras are needed
while for testing only a single image from the center camera is
required.

 So, the simulator sends images from the center camera and
the CNN predicts the steering angle and throttle for the car which
is then sent to the server. All this is done using flask-socketIO.

V. DATA DESCRIPTION

 Data is generated using the Udacity’s simulator. The

simulator has a training mode that used to drive the car on the

track. This run can be recorded and it generates a csv file with

7 columns. The first 3 columns contain absolute path to the

three images from left, center and right camera and the rest 4

have parameters from the car steering angle, speed, throttle and

brake.

VI. RESULTS

 The paper defines autonomy as the amount of time the car

can run without human intervention but in the simulator, there

is no way to human inputs. As mentioned above, we define

autonomy as the amount of time the car can follow the road. We

did various experiments using different hyper-parameters and

by changing the CNN. We observed the following results.

Model Time

CNN described in original

paper

6 minutes

CNN with learning rate 10e-

5

1 minute 23 seconds

CNN with learning rate 10e-

3

23 second

CNN with 4 convolutional

layers

2 minutes 30 seconds

CNN with Max Pooling

layer after 1 convolutional

layer

30 second

CNN with Max Pooling

layer after 2 convolutional

layers

12 minutes 30 seconds

CNN with Max Pooling

layer after all convolutional

layers

>20 minutes

VII. CONCLUSIONS

 It has been observed that adding a layer of max pooling
operation after every convolutional layer improves the
performance of the network.

REFERENCES

[1] Mariusz Bojarski et al “End to End Learning for Self-Driving Cars”

[2] Flask-SocketIO https://flask-socketio.readthedocs.io/

	I. Introduction
	II. Literature review
	Self-Driving cars have gained a lot of attention these days from various technology companies and automobile manufacturers in the world. A lot of research is going on in this area. Some of the latest work include “Motion Planning of Vehicle Obsta...

	III. Problem formulation
	IV. Problem solution
	V. Data description
	VI. Results
	VII. Conclusions
	References

