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Sparse Representation of Electrodermal Activity
With Knowledge-Driven Dictionaries
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Abstract—Biometric sensors and portable devices are being in-
creasingly embedded into our everyday life, creating the need for
robust physiological models that efficiently represent, analyze, and
interpret the acquired signals. We propose a knowledge-driven
method to represent electrodermal activity (EDA), a psychophys-
iological signal linked to stress, affect, and cognitive processing.
We build EDA-specific dictionaries that accurately model both the
slow varying tonic part and the signal fluctuations, called skin con-
ductance responses (SCR), and use greedy sparse representation
techniques to decompose the signal into a small number of atoms
from the dictionary. Quantitative evaluation of our method con-
siders signal reconstruction, compression rate, and information
retrieval measures, that capture the ability of the model to incor-
porate the main signal characteristics, such as SCR occurrences.
Compared to previous studies fitting a predetermined structure
to the signal, results indicate that our approach provides bene-
fits across all aforementioned criteria. This paper demonstrates
the ability of appropriate dictionaries along with sparse decompo-
sition methods to reliably represent EDA signals and provides a
foundation for automatic measurement of SCR characteristics and
the extraction of meaningful EDA features.

Index Terms—Dictionary design, electrodermal activity, (or-
thogonal) matching pursuit, skin conductance response, sparse
representation.

I. INTRODUCTION

R ECENT technological achievements are enabling the in-
creasing use of wearable devices that allows the sensing

of physiological signals for health [1], [2], medical [3], [4] and
other [5], [6] purposes. These applications stem from the need to
monitor individuals over long periods of time overcoming the
limits imposed by traditional nonambulatory technology and
providing new insights into diagnostic and therapeutic means
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[3]. They typically rely on small sensors for capturing data,
portable devices for temporal storage, and the use of wireless
networks for (periodic) data transfer to a database [7]. The large
volume of recordings from these sensors, their use in every-
day life and beyond specialized places like clinics, the potential
variability in the data quality, and the limited resources of ap-
propriately trained people for the corresponding signal analysis
underscore the need of automatic ways to process them. A cen-
tral goal is to derive meaningful quantitative constructs from
the measured signal data. Robust representations of physiolog-
ical signals should consider their characteristic structure, effi-
ciently encode the underlying information, and provide reliable
interpretation.

Electrodermal activity (EDA) is one of the most widely used
psychophysiological signals. It is related to the sympathetic
nerve activity through the changes in the levels of sweat in
the ducts [8], [9], that result in the observed skin conductance
response (SCR) fluctuations. EDA has been used in a variety
of laboratory settings examining attention, memory, decision
making, emotion, as well as a predictor of normal and abnormal
behavior and other psychological constructs [8], [9].

Recently the focus has shifted to collecting EDA signals out-
side the laboratory “in the wild” [10], [11] with wearable de-
vices that can measure continuously, privately logging and/or
wirelessly streaming data [12]–[14]. This unobtrusive long-term
recording of EDA results in large amounts of data that require de-
riving appropriate signal representation and interpretation with
two separate goals. EDA models should first target efficient sig-
nal compression yielding reduced memory allocation and fast
network transfer, accompanied with low reconstruction error.
Second, since the availability (and analysis ability) of human
experts is not always guaranteed, in the light of human–machine
applications, automated interpretation of the acquired physio-
logical patterns is essential. The reliable detection of SCRs,
linked to various indexes of psychophysiological interest [8],
can serve as a step toward this goal. Eventually, inference of
internal states based on EDA representations could afford us
more insights by comparing the parameters of the correspond-
ing models across various conditions of emotion, arousal, and
attention [15], [16].

Previous research has introduced parameterized [17] and
generative causal [15], [18], [19] models that consider the char-
acteristic structure of the signal or mimic the physiological pro-
cesses of the sweat ducts. These methods tend to explain the
cause and not the observed signal. They are mostly evaluated
through empirical findings about hidden variables for inferring
internal states [20], although several efforts have taken into ac-
count signal reconstruction criteria [15], [16].
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Sparse representation techniques model a signal as a lin-
ear combination of a small number of atoms chosen from an
overcomplete dictionary aiming to reveal certain structures of
a signal and represent them in a compact way [21]. Since psy-
chophysiological signals, such as EDA, show typical patterns
over time, their sparse decomposition can yield accurate rep-
resentations of scientific and translational value and contribute
to scalable implementations (e.g., on mobile devices). Noting
that the desired information contained in EDA signals is low
dimensional, we introduce the use of sparsity to robustly repre-
sent them. The innovation of our approach lies in that we model
the EDA signal directly by taking into account its variability
through the use of overcomplete knowledge-driven dictionaries
and evaluate our method explicitly through both signal recon-
struction and information retrieval measures.

We propose EDA-specific dictionaries that take into account
the characteristic signal structure in time. Dictionaries include
tonic and phasic atoms capturing the signal levels and SCR
fluctuations, respectively. We represent the characteristic SCR
shape with previously used sigmoid-exponential [17] and Bate-
man functions [15], as well as a chi-square function, introduced
in this study, and decompose EDA into a small number of tonic
and phasic atoms with matching pursuit [22] and orthogonal
matching pursuit [23]. Through postprocessing of the selected
phasic atoms, we automatically detect the SCRs occurring in
the signal. We evaluate the usefulness of our approach through
goodness of fit criteria and SCR detection measures with respect
to human annotated groundtruth. Due to potential portable de-
vice applications for signal storage and transmission, we further
analyze the compression rate of our algorithm. Our results indi-
cate that the proposed approach provides benefits compared to
the least-squares fit method that estimates predetermined model
parameters [17], with respect to reconstruction, discrimination,
and efficiency metrics.

In the following, we briefly survey previous EDA models (see
Section II). In Section III, we present our sparse EDA represen-
tation approach with knowledge-driven dictionaries. We next
describe the data for this study (see Section IV) and the corre-
sponding results (see Section V). Finally, we discuss our results
and conclusions in Sections VI and VII, respectively.

II. BACKGROUND AND RELATED WORK

The EDA signal is decomposed into tonic and phasic compo-
nents. The slow moving tonic part, called skin conductance level
(SCL), depicts the general trend, whereas the fast fluctuations
superimposed onto the tonic signal are the skin conductance
responses (SCR) (see Fig. 1) [8]. The shape of SCRs is charac-
terized by a steep increase in the signal and a slow recovery [24].
Amplitude is the most commonly reported SCR measure, quan-
tified as the amount of increase in conductance from the onset of
the response to its peak (see Fig. 1) with typical values ranging
between 0.1 and 1.0 μS [8]. SCRs are caused by the burst of
the sympathetic sudomotor nerves controlling the sweat glands
linked to emotion, arousal, and attention [8]. Previous work has
modeled explicitly the shape of the resulting signal with ap-
propriate functions [17], [25] or implicitly the causal relation

Fig. 1. Example of an electrodermal activity (EDA) signal of skin conductance
responses (SCR), marked with red “o,” and an indicative notation of SCR
amplitude measure.

between the underlying activity of sudomotor nerves and the
observable SCRs [15], [18], [19]. A review on EDA models can
be found in [19].

Several studies have mathematically expressed the SCR
shape. Lim et al. [17] developed a parameterized sigmoid-
exponential model of EDA fitted into signal segments. Results
were found to be correlated with previously established auto-
matic scoring methods [24]. Storm et al. [25] used a quadratic
polynomial fit to sequential groups of datapoints to detect SCRs,
whose total number was compared to manual counting.

In the context of causal EDA modeling, Alexander et al. [18]
represented the SCR shape as a biexponential function and used
deterministic inverse filtering to estimate the driver of nerve
bursts. Evaluation of the method was performed by visual in-
spection and by finding significant correlations of the resulting
SCR measures with variables of gender and age. Benedek et al.
[15], [26] assumed EDA to be the convolution of a driver func-
tion, reflecting the activity of sweat glands, with an impulse
response depicting the states of neuron activity. This method
was evaluated through the reconstruction error. It was also com-
pared to standard peak detection for a set of noise burst events
and was found to give results more likely to confound with
these environmental conditions. Finally, Bach et al. [16], [19],
[27], [28] have described a dynamic causal model (DCM) us-
ing Bayesian inversion to infer the underlying activity of sweat
glands. Each sudomotor activity burst is modeled as a Gaussian
function, which serves as an input to a double convolution oper-
ation yielding the EDA signal. The correlation of the estimated
bursts with the number of SCRs from semivisual analysis was
reported. This model was found to be a good predictor of anxiety
in public speaking.

EDA decomposition was cast as a convex optimization prob-
lem in [29]. The minimization of a quadratic cost function was
used to estimate the tonic and phasic signal components, repre-
sented with a cubic spline and a biexponential Bateman func-
tion, respectively. The EDA features extracted from the model
parameters yielded statistically significant differences between
neutral and high-arousal stimuli.

Despite their encouraging results, some of these research ef-
forts [17], [25] tend to impose restrictions on the signal struc-
ture. Also, studies modeling EDA through its relationship with
sympathetic arousal [15], [18], [19] assume a linear-time in-
variant system, which is not always justified by empirical evi-
dence [20]. While several studies take into account signal recon-
struction measures [15], [16], evaluation is mostly performed
by visual inspection or implicitly through expected empirical
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TABLE I
EQUATIONS AND PARAMETER VALUES OF DICTIONARY ATOMS REPRESENTING TONIC AND PHASIC EDA COMPONENTS

Atom EDA part Equation Parameter Values

Straight Line Tonic gβ (t) = Δ0 + Δ · t Δ0 ∈ {−20, −10, 1}
Δ ∈ {−0.010, −0.009, . . . , −0.001, 0,

0.01, 0.02, . . . , 0.10}

Sigmoid-exponential Phasic g
γ ( 1 ) (t) = e

−( s t−t 0 ) / T d e c ay[
1 +

(
s t−t 0
T r i s e

)−2
]2 u(t − t0 )

T r i s e ∈ {0.5, 0.8, . . . , 2.9}
Td e c ay ∈ {0.3, 0.6, . . . , 3} s ∈ {0.06, 0.07, . . . , 0.14}

Bateman Phasic g
γ ( 2 ) (t) =

(
e−a ( s t−t 0 ) − e−b ( s t−t 0 )

)
u(t − t0 ) a ∈ {0.2, 0.3, . . . , 2}

a < b b ∈ {0.4, 0.6, . . . , 2} t0 ∈ {0, 10, 20, . . . , 310}
Chi-Square Phasic g

γ ( 3 ) (t) = χ2 (st − t0 , k)u(t − t0 ) k ∈ {2.70, 2.73, . . . , 5.37}

u(t) = 1, t ≥ 0, and u(t) = 0 otherwise, χ2 (t, k): the value of k-degrees chi-square distribution at point t.

assumptions correlating the systems’ SCR measures with phys-
ical, mental, and behavioral states. The novelty of this study lies
in the fact that it directly models the EDA signal with sparsity
constraints and takes into account the SCR shape variability.
We evaluate our approach through both signal reconstruction
criteria and measures comparing automatically detected SCRs
to human-annotated SCRs.

III. PROPOSED APPROACH

Many psychophysiological signals carry distinctive structures
in time making the use of sparse decomposition techniques ap-
pealing. Their small number of nonzero components contain im-
portant information about the signal characteristics, which can
potentially be related to various medical conditions and psy-
chological constructs. For this reason, dictionaries have to be
carefully designed so that they capture the signal variability and
their underlying information. We propose the use of parameter-
ized EDA-specific dictionaries that are able to represent the tonic
and phasic parts of the signal (see Section III-A). The benefit
of introducing these predetermined atoms is that we know their
properties in advance, such as amplitude and rise and recovery
time, which are of interest in a variety of psychophysiological
studies [30]. We further decompose EDA into a small number
of atoms (see Section III-B) which are used to retrieve infor-
mation about its specific constructs, such as SCRs (see Section
III-C). We compare the proposed parametric EDA representa-
tion to the least-means-squares parametric fit proposed by Lim
et al. [17] (see Section III-D) with respect to signal reconstruc-
tion, information retrieval, and compression rate criteria (see
Section III-E).

In the following, we will use x = [x(1) . . . x(L)]T ∈ �L to
denote a vector of length L, x(t), t = 1, . . . , L, its corresponding
value at the tth sample in time and ‖x‖p = (

∑L
t=1 |x(t)|p)1/p

its p-order norm. The inner product between two vectors x1 and
x2 will be referred as x1

T x2 . A matrix with L1 raws and L2
columns will be written in bold capital letters as A ∈ �L1 ×L2 .

A. Dictionary Design

Since our approach involves a knowledge-based representa-
tion of signals, the choice of dictionary atoms is critical. Specif-

ically for EDA, we introduce two kinds of atoms that model the
tonic and phasic components of the signal (see Table I).

The first group takes into account the tonic part, i.e., the slow
varying signal level. It is quantified with straight lines having
an offset Δ0 and a slope Δ. Tonic atoms will be referred as
gβ ∈ �L , where β = (Δ0 ,Δ) is an element of the set B = �2 .
Negative values of Δ indicate decreasing lines, while positive
values represent lines with increasing slope.

The second group of atoms captures the phasic component
of EDA, meaning the rapid fluctuations superimposed on the
signal, also known as SCRs. We use three types of functions
that can potentially represent the characteristic steep rise and
slow decay of SCRs: the sigmoid-exponential, the Bateman,
and the chi-square functions. The sigmoid-exponential was in-
troduced in [17] for representing SCRs with high values of Trise
and Tdecay resulting in long rise and decay time. The Bateman
function [15], inspired by the laws of diffusion at the skin pores,
represents the shape of an impulse response, which when con-
volved with a driver function results in the EDA signal. Pa-
rameters a and b control the steepness of recovery and onset,
respectively; the higher they are, the less time it takes for the
SCR to transition to and from a peak. Finally, the probability
density function of the chi-squared distribution, referred here as
chi-square function, is introduced by the authors of this paper as
an alternative way to represent the SCR shape. It involves only
one parameter k, with large values resulting in wider SCRs.
Although no apparent physiological explanation could be found
for the chi-square, each dictionary atom is encoded with one
fewer parameter. Taking into account the large size of (over-
complete) dictionaries in sparse representation techniques, this
function benefits computational cost and memory allocation, an
important factor for mobile device applications.

In order to ensure large variety in the dictionary atoms, we
considered two additional parameters common for all phasic
atom types. The time scale s is responsible for the compression
and dilation of the atom in time with lower values resulting
in wider SCRs and vice-versa (see Fig. 2). Since there is no
a priori information about the location of SCRs within an anal-
ysis frame, the dictionary contains shifted versions of all atoms
over a range of time offsets t0 spanning one signal frame.

We will refer to the three types of sigmoid-exponential, Bate-
man, and chi-square SCR atoms as gγ (1 ) ∈ �L , gγ (2 ) ∈ �L ,
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Fig. 2. Examples of normalized phasic atoms represented with sigmoid-exponential, Bateman and chi-square functions for different time scale parameters
s = 0.06, 0.1, 0.14 and time offset t0 = 20. For each time-scale value, plots were created using all combinations of corresponding atom-specific parameters.

and gγ (3 ) ∈ �L , respectively, with corresponding parameters
γ(1) = (Trise , Tdecay , s, T0) ∈ Γ(1) , γ(2) = (a, b, s, T0) ∈ Γ(2)

and γ(3) = (k, s, T0) ∈ Γ(3) , where Γ(1) = �+4
, Γ(2) = �+4

,
and Γ(3) = �+3

. By combining the possible parameters, we
created all tonic and phasic atoms which are merged into
three different dictionaries D(1) = {gβ (t), gγ ( 1 ) (t)}, D(2) =
{gβ (t), gγ ( 2 ) (t)}, and D(3) = {gβ (t), gγ ( 3 ) (t)}, containing
sigmoid-exponential, Bateman, and chi-square functions, re-
spectively. In the case of sigmoid-exponential dictionary (see
Table I), for example, there are nine possible values for scale s,
32 for time offset t0 , 9 for Trise , and 10 for Tdecay , resulting in
25 920 phasic atoms. Combining the 3 and 21 different values
for Δ0 and Δ, respectively, we get additionally 63 tonic atoms,
that result in a dictionary size of 25 983 atoms in total. Sim-
ilarly, Bateman and chi-square dictionaries contain eventually
the same number of phasic and tonic atoms with the sigmoid-
exponential one. All dictionary atoms are normalized for unit
standard deviation. We introduced more phasic than tonic atoms
in order to capture the large variety of SCR shapes compared
to the signal level, which remains fairly constant through an
analysis frame. The parameter values (see Table I) were em-
pirically set so that the resulting atom shapes are similar to the
observed SCRs. In the future, we plan to automatically learn the
dictionary parameters for more accurate representation.

B. Sparse Decomposition

Sparse representation of a signal f ∈ �L can described by the
following equation providing a nonconvex problem [21]:

min
c

‖c‖0 subject to f = Dc (1)

where D ∈ �L×Q is an overcomplete dictionary matrix with Q
prototype signal-atoms and c ∈ �Q are the atom coefficients
with N � Q nonzero elements.

One way to approach this NP-hard problem is to use greedy
strategies, that abandon exhaustive search in favor of locally op-
timal updates. The most well known are MP [22] and OMP [23],
[31] reaching suboptimal solutions. Another way of solving Eq.
(1) is through relaxation of the discontinuous l0-norm leading
to basis pursuit [32] and focal underdetermined system solver
[33], [34]. Despite the fact that these relaxation approaches can
obtain global solutions, they are far more complicated and less
efficient in terms of running time [21], rendering MP algorithms
compelling because of their simplicity and low computational
cost. Theoretical guarantees of correctness [35] along with em-
pirical experiments [36]–[38], led us to the use of MP and OMP
in this paper. (O)MP will denote cases referring to both these
algorithms.

Let D be a dictionary described in Section III-A containing
a total of Q tonic and phasic atoms from either the sigmoid-
exponential, Bateman, or chi-square functions, i.e., D = D1 , or
D = D2 , or D = D3 , and gζn an atom from the dictionary, i.e.,
gζn ∈ D: ζn ∈ B ∪ Γ(1) , or ζn ∈ B ∪ Γ(2) , or ζn ∈ B ∪ Γ(3) .
According to MP [22], the initial signal f can be written as a
linear combination of infinite atoms as follows:

f =
∞∑

n=0

cngζn (2)

where cn are the atom coefficients. MP selects a set of atoms
from D that best matches the signal structure. If gζ0 ∈ D is the
atom at the first iteration, the signal f can be written as follows:

f = (fT gζ0 ) · gζ0 + Rf (3)

where Rf is the signal residual after approximating f in the di-
rection gζ0 . The selection of gζ0 is greedily performed in order
to maximize the similarity of the atom to the original signal,
i.e., such that fT gζ0 is maximum. Note that in the selection
criterion, we did not use the absolute value, as in the original
MP algorithm. If we allowed negative inner product values, i.e.,
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Fig. 3. EDA representation scheme and SCR detection for an example signal frame. (a) Input and reconstructed signal with solid blue and dashed red lines. The
location of expert hand-annotated SCRs is marked (red “×”), along with the signal peaks (magenta “∗”) and the SCRs estimated based on the phasic atoms of the
sparse decomposition algorithm (green “•”). The final SCRs (black “©”) are located by combining the SCRs from the phasic atoms according to their location
and mapping them to the signal peaks. (b) The normalized dictionary atoms selected by the first four iterations of OMP. The first tonic atom (solid cyan line)
captures the signal level, the first and third phasic atoms (dashed magenta and dash-dotted green lines) the first SCR, while the second phasic atom (black dotted
line) the second SCR. (c) The normalized phasic atoms multiplied by the corresponding OMP coefficients (dashed magenta, dotted black, and dash-dotted green
lines). The energy of each atom is indicative of the order they have been selected by OMP with higher energy atoms selected first.

negative atom coefficients, the shape of the predefined atoms
would change, resulting in a totally different signal interpre-
tation. Negative coefficients of the SCR atoms, for example,
would not have any physical meaning and would disturb the
structure of the original EDA signal.

After the first iteration, residual Rf is similarly decomposed
by selecting an atom from dictionary D that best matches
its structure. Iteratively, the residual Rn+1f can be written as
follows:

Rn+1f = Rn f −
(
(Rn f)T gζn

)
· gζn (4)

where gζn ∈ D is selected to maximize (Rn f)T gζn . After N
iterations, the original signal f is approximated by fN :

fN =
N −1∑
n=0

(
(Rn f)T gζn

)
· gζn

=
N∑

n=0

[δn ·
(
(Rn f)T gβn

)
· gβn +

(1 − δn ) ·
(
(Rn f)T gγn

)
· gγn ] (5)

where δn ∈ {0, 1} selects either a tonic or a phasic atom (see
Table I), βn ∈ B and γn ∈ Γ(1) , or γn ∈ Γ(2) , or γn ∈ Γ(3) are
the parameters of the nth atom.

Since processing of long duration signals is involved, we
perform segmentation and frame-by-frame analysis. Let the su-
perscript (k) denote the kth time frame of length L, where
k = 1, . . . ,K with K being the total number of frames. There-
fore, the kth frame of the original signal in terms of the atoms
selected by MP can be approximated by

f (k)
N =

N −1∑
n=0

(
(Rn f (k))T gζn

)
· gζn . (6)

We use a step of L
3 samples in order to avoid discontinuities

introduced by the start and end of the signal frame. As will
be described in Section III-C, SCR detection is based on the
middle part of each signal frame for the same reason. A similar
approach has been followed with other biosignals [39].

OMP [23], [31], [35], [40] is a refinement of MP which adds
a least-squares minimization to obtain the best approximation
over the atoms that have already been chosen at each iteration.
Let DSN = [gζ0 , . . . ,gζN −1 ] ∈ �L×N be the matrix containing
the selected atoms after N iterations. The least-squares approx-
imation fN of signal f is

fN = DSN (DSN
T DSN )−1DSN

T f (7)

where the term in brackets corresponds to the N nonzero co-
efficients used to scale the selected atoms. OMP updates the
residual by projecting the original signal onto the linear sub-
space spanned by the selected atoms; therefore, it never selects
the same atom twice. Similar expressions hold for the signal of
the kth time frame.

A schematic representation of the way OMP sparsely de-
composes a signal frame is presented in Fig. 3. The original
and reconstructed signals are shown with solid and dashed lines
[see Fig. 3(a)]. OMP first selects a straight line atom in order
to represent the signal level and then two phasic atoms cen-
tered around the 100th and 220th sample to capture the two
SCRs. The original normalized atoms as well as the resulting
phasic atoms when scaled with the coefficients computed by
OMP are shown in Fig. 3(b) and (c). We also notice that the
phasic atom centered around sample 100 has the highest en-
ergy [see Fig. 3(c)], since it represents the wider SCR of the
frame. Finally, the third selected phasic atom is centered toward
the end of the first annotated SCR around sample 140. This
happens because the first phasic atom did not capture the en-
tire energy of the corresponding SCR; therefore, another atom
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with much smaller coefficient was introduced. In Section III-C,
we will describe how we combine these two phasic atoms lo-
cated at samples 100 and 140 in order to reliably represent an
SCR.

C. SCR Detection

Let {g(k)
γm : m = 1, . . . , M} be the phasic atoms selected after

N (O)MP iterations at the kth signal frame with M < N , as at
least one tonic atom will compensate for the signal level. Since
the dictionary is predetermined, we know exactly the location
of the maximum amplitudes of the phasic atoms, denoted as
p

(k)
m . As shown in Fig. 3 for atoms centered around samples

100 and 140, more than one phasic atoms might be selected
to represent a single SCR because the fit between dictionary
atoms and signal is not always perfect. Taking advantage of
their time proximity, we can group phasic atoms according to
their location with a histogram of the p

(k)
m values with Nb bins.

Each nonempty histogram bin h will contain all phasic atoms
{g(k)

γm h
} capturing one SCR, which is represented by the linear

combination of the grouped phasic atoms:

SCR(k)
h (t) =

∑

{g (k )
γ m h

}

c(k)
mh

g(k)
γm h

(t). (8)

The weights c
(k)
mh correspond to the atom coefficients computed

by (O)MP. Because of the simple shape of the above SCR signal,
we are able to find its amplitude and time of peak by simply
locating its maximum point. SCRs with amplitude less than a
predetermined threshold athr were omitted [8], in accordance
to the manual annotation (see Section IV-B).

To estimate the final SCR locations for the whole signal, we
merged the SCRs from all analysis frames. Since the starting and
ending samples of each frame are more prone to errors due to
discontinuity issues, we only take into account SCRs located in
the middle L

3 samples of each frame. The value L
3 was chosen to

coincide with the length of the analysis step in order to ensure
that each SCR is taken into account once. For the first and
last frame we also consider SCRs from the first L

3 and last L
3

samples, respectively. A signal frame of 10 s (320 samples), for
example, will result in analysis step of approximately 3.3 s (107
samples), in which the shape of an SCR is easily identifiable, as
shown in Fig. 3.

Since our approach involves local decisions made on each
signal frame, a postprocessing step that takes into account the
global EDA shape is necessary. Simple peak detection was per-
formed and the located SCRs were then mapped to the nearest
detected peak within a distance threshold dthr . SCRs not paired
with a neighboring peak were omitted and those matched to
the same peak were only counted once. In Fig. 3, for example,
the phasic atoms centered around samples 100 and 140 were
grouped together based on the proximity of their location and
were further mapped to the peak of sample 110 to represent
the first SCR. In order to capture the second SCR, the phasic
atom centered around sample 220 was mapped to the peak from
sample 230.

D. Description of the Least-Squares Fit Model for EDA

We compare our approach against the least-squares fit EDA
representation model by Lim et al. [17], since it is conceptually
the closest to our method involving a parameterization of the
signal. The authors proposed a eight-parameter model that incor-
porates the signal tonic level, at most two SCRs and a recovery
phase. SCL is represented by a straight line with offset c. SCRs
are captured by sigmoid-exponential functions with common
rise time tr and decay time td . They are located at time offsets
Tos1 , Tos2 , and have amplitudes g1 , g2 , respectively. Finally, the
recovery phase is assumed to follow the exponential decay of
SCRs with the same time constant decay td and an initial am-
plitude a0 . Therefore, the eight-parameter model representing
an EDA signal frame can be written as follows:

f(t) = c + a0e
− t

t d + fs(t; g1 , Tos1 ) + fs(t; g2 , Tos2 ) (9)

fs(t; gi, Tosi
) =

gi · e−
t−T o s i

t d(
1 +

(
t−To s i

tr

)−2
)2 , i = 1, 2. (10)

The nonlinear least-squares fit [41] was used to estimate the
model parameters from the data. Time offset and amplitude of
SCRs were initialized from peak detection. If less than two
peaks were detected in a signal frame, only the corresponding
parameters were estimated and the remaining were set to zero.

E. Evaluation

Evaluation of the proposed model is performed with respect
to the quality of signal reconstruction, the ability to capture
EDA-specific characteristics and the compression rate.

1) Signal Reconstruction: Signal reconstruction is evaluated
with the root mean square (RMS) error, defined as follows:

RMSErr =
1
K

K∑
k=1

√√√√ 1
L

L∑
l=1

(f (k)(l) − f
(k)
N (l))2 (11)

where f (k)(l) denotes the value of the lth sample at the kth
signal frame with k = 1, . . . , K and l = 1, . . . , L; similarly for
the reconstructed signal f

(k)
N (l) with N (O)MP iterations. Low

RMS error values reflect high-quality signal representation.
2) Information Retrieval: Evaluation with RMS error pro-

vides a limited view of the representation quality, since an overly
complex model may result in perfect representation of the exist-
ing data, but might perform poorly on unseen patterns [42]. One
technique to avoid overfitting with greedy algorithms, such as
(O)MP, is early stopping, that might result in a better estimate
of the original signal without introducing too many erroneous
or noisy entries [43], [44]. Indeed, our results (see Section V-
A2) suggest that 4-7 (O)MP iterations provide the most reliable
EDA representation. An alternative way is the use of quantita-
tive and qualitative criteria, depending on the application that
assess the amount of meaningful information captured by the
proposed models [45], [46]. In this study, we measure the ability
of our approach to detect SCRs, an important EDA component
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[8], [9]. SCR detection is assessed in two ways, each containing
complementary accuracy metrics.

We first quantify the quality of SCR representation based on
the amount of detected SCRs and their distance from the human
annotated reference ones. Let Sr = {pri

} and Sd = {pdi
} be

the sets of locations of real and detected SCRs, respectively.
The absolute relative difference between the number of real and
detected SCRs captures the portion of hand annotated SCRs that
is correctly located by our system:

RDiff =
||Sr | − |Sd ||

|Sr |
(12)

where | · | denotes the cardinality of a set. In order to see how
many of the detected SCRs are correct, we compute the mean
distance of each detected SCR from the closest real one

MinDist =
1

Md

Md∑
i=1

(
pdi

− min
pr j

|pdi
− prj

|
)

. (13)

We further calculate precision and recall measures. If
Srd = {pdi

: ∃j s.t. minpr j
|pdi

− prj
| < dmax} are the esti-

mated SCRs whose distance to their closest real SCR is less
than a maximum threshold dmax , precision equals to the portion
of detected SCRs that are close to a real one within the dis-
tance boundary dmax : Precision = |Srd |/|Sd |. Recall captures
the fraction of hand-annotated SCRs that are detected from our
system within the same boundary: Recall = |Srd |/|Sr |.

F-score is the harmonic mean of precision and recall, provid-
ing a single measure from these complementary ones:

Fscore = 2 · Precision · Recall
Precision + Recall

. (14)

These goodness of detection measures improve as the distance
boundary dmax increases, since evaluation becomes more for-
giving to errors. Note that the distance boundary dmax used
for evaluation of SCR detection is different from the distance
threshold dthr for mapping SCRs detected from the phasic atoms
to the signal peaks (see Section III-C).

One can observe that precision is related to the MinDist metric
quantifying how close an estimated SCR is to a real one. On the
other hand, recall is closer to RDiff that captures the algorithm’s
ability to reliably detect the hand-annotated SCRs.

SCR detection results (see Section V-A2) are reported with
a tenfold cross validation by randomly splitting the data from
the 37 subjects. At each fold, the training set was used to find
the optimal combination of dthr and Nb (see Section III-C)
from a pool of parameters dthr ∈ {32, 64, . . . 320 samples} and
N ∈ {2, 3, 4, 5 bins}, selected to maximize the Fscore of the
corresponding data, since this yields a combined measure of
the amount of missed and erroneously detected SCRs. The av-
erage value of each metric on the test set is reported based on
the optimal parameters of each fold, as found from the training
set. This reduces the risk of overfitting and is more indicative of
the performance of our algorithm on novel data.

3) Compression Rate: Compression rate is evaluated as the
number of bits used for representing the EDA signal over 1 s
with low values indicating better compression ability.

Fig. 4. Logarithmic ratio between the second-order norms of the residual
Rn f and original signal f , r = 2 · log10 (||Rn f ||2 /||f ||2 ), computed for 1–50
orthogonal matching pursuit (OMP) iterations based on a dictionary of tonic
and Bateman phasic atoms. Red-dashed line denotes a decay of approximately
constant rate between 15–30 iterations. Green dashed-dotted line denotes a
steeper constant decay between 30–50 OMP iterations.

IV. DATA DESCRIPTION

A. Data Collection

Our data contain 10-min recordings of 37 children watching a
preferred television show in order to sustain attention and keep
the subject stationary. Two silver-silver chloride electrodes were
placed on the index and middle finger of the child’s nondominant
hand. These were connected to the BIOPAC MP150 system that
recorded EDA at a sampling rate of 32 Hz. Details about the
experiment can be found in [47].

B. Preprocessing and Annotation

High-frequency noise artifacts were removed with a low-pass
Blackman filter [48] of 32 samples (1 s).

Annotation of SCRs was performed by an expert using the vi-
sualization capabilities of BIOPAC’s AcqKnowledge software.
SCR scoring involved visual inspection of the denoised EDA
signal within a 30-s time frame and detection of signal “peaks”
with the typical steep rise and slow decay. Each SCR amplitude
was visually determined (see Fig. 1) and a minimum threshold
of 0.05 μS was set for an SCR to be eligible for annotation [8].
In order to ensure reliable annotations, 25% of the data were
double coded, yielding interannotator agreement of 96%.

V. EXPERIMENTS

We evaluate the performance of our method based on the
collected and annotated data (see Section IV) and compare it
against the least-squares fit approach (see Section V-A). Results
concern the mean of each evaluation metric over all subjects.
We further discuss how the analysis frame length and the SCR
detection parameters affect our results (see Sections V-B and
V-C).

In the following experiments, the maximum number of
(O)MP iterations was determined so that the coherent signal
structures, i.e., the nonzero signal components, are likely to be
recovered. As explained in [22], this occurs when the residual
decay ratio r = 2 · log10(||Rn f ||2/||f ||2) decays at a constant
rate. Our data suggest that this occurs after 15 OMP itera-
tions with a dictionary of Bateman phasic atoms, while after



CHASPARI et al.: SPARSE REPRESENTATION OF ELECTRODERMAL ACTIVITY WITH KNOWLEDGE-DRIVEN DICTIONARIES 967

Fig. 5. Signal reconstruction and SCR detection results. (a) Root mean square (RMS) error between original and reconstructed signal with respect to (w.r.t.) the
number of (orthogonal) matching pursuit ((O)MP) iterations. (b) Absolute number of relative difference between real and estimated SCRs w.r.t. the number of
(O)MP iterations. (c) Mean distance of estimated SCRs from their closest real SCR w.r.t. (O)MP iterations. (d), (e), (f) Precision, recall, and Fscore of SCR detection
with 6 (O)MP iterations w.r.t maximum distance threshold dm ax between real and detected SCRs, the latter ranging between 10–100 samples, or 0.3125–3.125 s.
Results on Fig. (b)– (f) are reported based on a tenfold cross validation, during which SCR detection on the test set is performed using the parameter combination
(dthr ,Nb ) that gave the best results on the training data, where dthr is the distance threshold for mapping estimated SCRs to the nearest signal peaks and Nb is
the number of histograms bins for grouping the selected phasic atoms of each analysis frame. Same legend applies to all plots.

30 iterations decay happens at an even steeper constant slope
(see Fig. 4). Similar results are obtained from other types of
dictionaries, omitted for the sake of simplicity. For this reason,
we examine 1–15 (O)MP iterations and in fact, our experimental
results indicate that even a smaller number can achieve reliable
representation (see Section V-A).

A. EDA Representation Results

For consistency with [17], in which 10-s isolated EDA seg-
ments were evaluated, results in this section are reported and
compared to [17] with the same analysis frame.

1) Signal Reconstruction: During the first iteration, MP
yields better signal reconstruction than OMP [see Fig. 5(a)].
Since MP does not reestimate the atom coefficients, it selects
more tonic atoms in order to adjust signal levels after the ad-
dition of new phasic ones. On the contrary, OMP readjusts the
levels of the already selected tonic atoms. It is also apparent
from Fig. 6 that tonic atoms are mostly selected by OMP during
the first two iterations, whereas this occurs very often in MP.
Therefore, during the first iteration, MP tends to capture part
of the signal energy that is more attributed to the signal level
and less to the signal fluctuations, resulting in lower RMS values.
As more iterations occur, OMP achieves lower RMS indicating
its ability to more reliably capture the signal variability.

Fig. 6. Percentage of selected tonic atoms with respect to the number of
iterations for (orthogonal) matching pursuit ((O)MP) and the various dictionaries
(with sigmoid-exponential, Bateman and chi-square phasic atoms).

2) Information Retrieval: Since OMP introduces more pha-
sic atoms than MP for a given iteration, the absolute relative
difference between real and estimated SCRs RDiff is lower
and becomes optimal around 4–7 iterations [see Fig. 5(b)]. This
can be also justified by the fact that in a 10 s frame, we have
on average 1–3 tonic and 2–4 phasic atoms, the latter capturing
the 1–3 expected SCRs. To achieve similar RDiff , MP needs
more iterations due to the tonic atoms it keeps selecting.
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Fig. 7. Compression rate of the original EDA signal and the EDA representa-
tion with the proposed sparse decomposition and the least-squares fit methods.
(Y-axis break between 100 and 900 bits/s).

Because MP selects less phasic atoms than OMP, it tends to
capture the most distinct SCRs, resulting in smaller distances
MinDist from the estimated to the real SCRs [see Fig. 5(c)]
and higher precision [see Fig. 5(d)]. For the same reason MP
shows poorer recall [see Fig. 5(e)], as it misses many SCRs.
Compared to the least-squares fit approach, Fscore is higher for
both MP and OMP [see Fig. 5(f)], indicating the ability of our
system to reliably detect SCRs.

3) Compression Rate: In a 10 s segment, we compute the
number of encoding bits for the raw signal, the least-squares
fit and the proposed models. Long integers and single-precision
binary floating-point numbers of 32 bits are assumed.

Since the original signal was recorded with 32 Hz, a 10 s
signal segment is represented with 320 samples (1280 Bytes);
therefore, its compression rate is CRraw = 1024 bits/s.

Lim et al. [17] use a 8-parameter model to represent a 10 s
signal. Assuming that the time offset parameters Tos1 , Tos2 are
long integers and the remaining parameters are floating points,
we need 32 Bytes, resulting in CRb = 25.6 bits/s.

In our approach, given a known dictionary, each atom is rep-
resented by its indexed location in the dictionary and the corre-
sponding coefficient. A 16 bit integer can encode the location
of the 25 983 atoms used in our experiments. Assuming that
each atom coefficient is a single-precision floating point, N se-
lected atoms can be encoded by (16·N + 32·N ) bits, which is
equivalent to compression rate CRp = 4.8N bits/s.

The proposed model achieves compression rate between 14.2
to 213 times upon the original signal depending on the num-
ber of (O)MP iterations (see Fig. 7). Compared to the least-
squares approach, signal decomposition with 2–5 atoms also
yields lower compression rate (see Fig. 7) and lower RMS error
[see Fig. 5(a)].

B. Effect of Analysis Frame Length

The different time scales over which tonic and phasic EDA
components coevolve, the first being much slower, create the
need of analyzing multiple window lengths. Since the tonic
component of the signal lies in the frequency range between
0–0.05 Hz [49], the upper limit corresponding to 20 s, we ex-
amined EDA representation metrics of variable frame lengths

Fig. 8. Effect of the analysis frame length L (in seconds) to signal reconstruc-
tion and SCR detection. (a) Root mean square (RMS) error between original and
reconstructed signal for 1–15 orthogonal matching pursuit (OMP) iterations. (b)
and (c) Fscore of SCR detection with 4 and 10 OMP iterations. Same legend
applies to both plots.

between 5–30 s. For the sake of simplicity, our experiments
for this section are performed with OMP based on Bateman
phasic atoms, but no significant differences occur from other
combinations.

Representation results for the various analysis windows are
greatly influenced by the number of (O)MP iterations. Signal
reconstruction based on a few selected atoms is better for shorter
than longer analysis frames, while this difference converges as
the number of OMP iterations increases [see Fig. 8(a)]. Similar
patterns occur with SCR detection Fscore, although the short-
term nature of the phasic part makes short analysis frames more
compelling with respect to that [see Fig. 8(b) and (c)].

C. Effect of SCR Detection Parameters

We analyze SCR detection with respect to the distance thresh-
old dthr used for mapping the estimated SCRs to the nearest sig-
nal peaks and with respect to the number of histograms bins Nb

for grouping the selected phasic atoms of each analysis frame.
As given in Section V-B, we report results using OMP with
Bateman atoms.

When changing dthr , the absolute relative difference RDiff
between the number of real and detected SCRs remains almost
unaltered [see Fig. 9(a)]. This is not the case for their minimum
average distance MinDist, which decreases as dthr becomes
larger [see Fig. 9(b)], suggesting that more information about
signal peaks benefits SCR detection.

The number of histogram bins Nb strongly affects the absolute
relative difference RDiff between real and estimated SCRs, since
the latter directly depends on the number of groups in which
the phasic atoms are combined. In contrast, metric MinDist is
not largely affected by this parameter.
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Fig. 9. SCR detection metrics with respect to the distance threshold dthr for
mapping estimated SCRs to signal peaks and the number of histogram bins Nb

for grouping the selected phasic atoms from sparse decomposition. (a) Absolute
relative difference RDiff of real and detected SCRs. (b) Mean distance MinDist
of detected SCRs to the closest real one.

VI. DISCUSSION

Our method involves the design of EDA-specific dictionaries
that take into account the tonic and phasic parts of the signal
and the use of sparse decomposition techniques to represent
the EDA. Compared to previous EDA models, our approach
incorporates the idea of sparsity and is quantitatively evaluated
directly on the signal as well as its human annotated charac-
teristics. We examined three different types of phasic atoms of
similar nature. These provided equivalent results in terms of sig-
nal reconstruction and information retrieval metrics (see Fig. 5);
therefore, no definite conclusions can be drawn with respect to
the most suitable dictionary for representing EDA among these
variants. A larger amount of data from variable sources could
potentially address this further in the future.

Sparsity is important for representing biomedical signals, es-
pecially for efficient storage and transmission in ambulatory
(mobile device based) applications. Parameterization of EDA in
light of compression was considered by Lim et al. [17], who
used a eight-parameter sigmoid exponential model. This effort
has several constraints, as it assumes the existence of at most two
SCRs within 10 s and is tested on predefined signal segments. In
real-world applications, however, the shape of the signal is more
unpredictable and can be better captured by the variability of
the proposed EDA-specific dictionaries. Sparsity has also been
examined by the DCM approach [16], that computes the onset
and amplitude of spontaneous fluctuations every 2 s, resulting
in 10 parameters for every 10 s. In our sparse EDA model, each
atom is represented by its location in the dictionary and the co-
efficient to which it is multiplied. This results in 2N parameters
for a 10 s segment , where N is the number of (O)MP iterations.
Taking into account that 5 (O)MP iterations give adequately reli-
able results (see Fig. 5), the two algorithms are fairly equivalent
with respect to compression rate. Sparse representations can
be further used to represent other psychophysiological signals
with characteristic structure in time, such as electroencephalo-
gram (ECG), electrocardiogram (ECG), and photoplethysmo-
graph (PPG).

Our approach offers also advantages in terms of quantitative
evaluation criteria. Most previous studies were implicitly vali-
dated with statistical analysis of the resulting parameters. Lim

et al. [17] visualized an example residual error and reported
residuals below 5% of the signal amplitude, while Bach et al.
[19] plotted an original example and reconstructed signal with
no further quantitative results. Bach et al. [16] reported the neg-
ative log-likelihood of the mean sum of squares of the residual,
referred as Log Bayes Factor (LBF), with DCM reaching LBF
values around −3 × 106 . In their nonnegative deconvolution
approach, Benedek et al. [15] examined signal reconstruction
with average RMS error of 0.019 μS. In our study, OMP run-
ning for 15 iterations achieves mean RMS error of 0.015, 0.019,
0.017 μS for dictionaries containing sigmoid-exponential, Bate-
man, and chi-square phasic atoms, respectively. Although 15
iterations are not indicative of the representation quality of our
algorithm, a smaller number of iterations appears more suitable
for the inherent low-dimensionality of EDA (see Fig. 5), they
give the least compressed representation in our setup and are
more comparable with [15]. Despite the fact that comparisons
are performed on different data and in the context of slightly dif-
ferent approaches, these results indicate a promising framework
for our method. Since dictionaries were empirically designed,
our future work will examine dictionary learning techniques for
data-specific dictionaries that can improve signal reconstruction
measures.

The high correlation between SCRs and sympathetic nerve
activity bursts and their extensive use in various psychophysi-
ological studies [8] suggest that reliable SCR detection mecha-
nisms are necessary. It is therefore essential to validate automatic
scoring systems with human-annotated ground truth, since the
increasing use of longitudinal data renders manual annotation
techniques laborious and time consuming. To the best of our
knowledge, only Storm et al. [25] compared the number of au-
tomatically detected and manually annotated SCRs with linear
regression analysis. For 0.05 μS minimum SCR amplitude, the
magnitude of linear regression ranged between 0.75 and 0.98
depending on the model parameters and the data. Although it is
useful to compare the total number of real and estimated SCRs,
information about their relative location is also important. One
of the novelties of this paper lies in the use of SCR detection cri-
teria assessing both the sensitivity and specificity of automatic
SCR scoring. These include two complementary pair measures:
1) the relative absolute difference between the number of real
and detected SCRs, the average distance of detected SCRs to
their closest real one and 2) the precision and recall of SCR
detection, yielding the Fscore. Fscore is 83.43% using six OMP
iterations and a tolerance threshold of 1.25 s between real and
estimated SCRs [see Fig. 5(f)]. This improves upon [17], which
achieves 75.1% Fscore for the same conditions, and suggests
that our approach appears promising for an automatic system.

Continuous advances in wearable technology suggest that
physiological models should go beyond traditional signal re-
construction and pattern detection to signal interpretation in
the context of internal human state tracking that could lead
to individualized assessment and intervention [3], [7]. Previ-
ous efforts have provided meaningful interpretations of EDA
models in terms empirical expectations (e.g., public versus non-
public speaking [19], baseline versus anticipation [19], differ-
ent noise stimuli [15], neutral, negative and positive arousing
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images [16]). Other studies have analyzed EDA patterns in the
context of human–computer interaction relatively to individ-
ual’s affective states [6], [50]. The parameterized nature of the
dictionary atoms in our approach can capture SCR characteris-
tics, such as width, rise, and recovery time, which could further
lead to more intuitive interpretations of EDA signals in terms of
cognitive, social, and emotional stimuli. Data that allow these
types of comparisons, including in the context of clinical trans-
lation such as therapy for Autism [51], will be explored as part
of our future work.

A common problem when measuring changes in EDA is over-
lapping SCRs. It is typically agreed that when a second response
occurs before completion of the first, one would count two over-
lapping responses [30]. Such an example is shown in Fig. 3(a)
with two overlapping SCRs at samples 110 and 230, which we
notice that our sparse decomposition approach is capable of
discriminating. Previous studies have also assessed this by con-
sidering the underlying processes that contribute to SCRs as a
linear time invariant system and measuring the event onsets of
the system generator [27], [28].

VII. CONCLUSION

We propose a knowledge-driven EDA model that sparsely
decomposes the signal into a small number of atoms from a
dictionary. We focus on the dictionary design, which contains
tonic and phasic atoms relevant to the signal levels and SCR
fluctuations, respectively. With appropriate postprocessing, we
automatically retrieve the SCRs from the EDA. Evaluation of
our approach includes signal reconstruction, SCR detection, and
compression rate analysis. These measures are improved upon
the least-square fit model, that uses a parameterized template,
providing benefits in terms of all criteria.
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