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Abstract—Quantifying the inherent coordination between in-
teracting individuals can afford us new insights into their
emotions, communicative intent, and relationship quality. We
propose a novel framework to capture the physiological syn-
chrony between romantic partners through sparse representa-
tion techniques and appropriately designed parametric dictio-
naries that take into account the characteristic structure of the
considered signals. Physiological synchrony is operationalized
as the similarity of co-occurring electrodermal activity (EDA)
streams captured through the distance in the corresponding
parametric representation space, as well as through the joint
signal representation errors. Results indicate that the proposed
sparse EDA synchrony measures (SESM)–evaluated on two
datasets of couples’ interactions–differ across tasks of various
emotional intensity and are associated with the partners’
attachment style. These results provide a foundation towards
designing novel descriptors of interaction and physiological
linkage between individuals for emerging affective computing
applications.

1. Introduction

Interpersonal synchrony refers to the temporal coordi-
nation of behaviors between individuals. This inherent ten-
dency to co-regulate has been extensively studied in relation
to social, psychological, and developmental factors [1], [2].
Beyond the behavioral level, life-science researchers have
also examined co-regulation of physiological patterns be-
tween individuals focusing on patient-therapist, child-parent,
and romantic relations [3], [4], [5]. Both risks and benefits
have been associated with the presence of this physiological
linkage depending on the context, nature of interaction and
individual characteristics [6].

A variety of studies have established the existence of
physiological synchrony between romantic couples as part
of a framework that examines the general interplay of part-
ners’ mood, emotions, and physiology [7], [8], [9], [10].
This phenomenon is of special interest to researchers since
the extent to which one’s behavior affects his/her partner
has implications related not only to the functioning of the
relationship, but also to the individuals’ health and well-
being [4], [6], [11]. Devising novel ways to reliably quantify

this physiological coordination is an important building
block for assisting and further advancing these studies.

Previous work has proposed a variety of signal pro-
cessing and time-series analyses in order to capture physi-
ological synchrony. Statistical approaches involve the use
of bivariate time-series and multilevel models [7], [12].
Dynamical systems have been introduced as an intuitive
way to quantify an individual’s self-regulation and partners’
co-regulation through the parameters of a coupled linear
oscillator [8], [9], [13]. Interpersonal synchrony has also
been modeled through (cross-lagged) correlation, recurrence
analysis, and spectral coherence [14], [15]. A detailed re-
view of these approaches can be found in [16]. These
mathematical models have shown a great promise for quan-
tifying the linkage in terms of behavioral and physiological
patterns. However, they typically capture the coordination
of aggregated measures derived from the signals of interest
rather than the co-evolution between the signal trends and
fluctuations. To overcome this issue, we propose an alter-
native way to quantify this bio-linkage by measuring the
similarity of the original physiological signals rather than
the summary measures derived from those.

Many biomedical signals depict a characteristic struc-
ture over time that can be taken into account when de-
signing physiological models. Previous studies have pro-
posed signal-specific parametric dictionaries with the use
of sparse representation techniques in order to represent
and interpret physiological signals, such as the electroder-
mal activity (EDA) and the electrocardiogram (ECG) [17],
[18]. These models incorporate the main information into
a carefully-designed parametric space, whose parameters
depict the morphology (e.g. fluctuations, amplitude, etc.) of
the considered data. Multidimensional sparse representation
techniques have been employed to jointly represent parallel
streams of data and evaluate their similarity [17].

In the current paper, we extend this signal similarity
index to a variety of synchrony scores derived from the
distance metrics of the corresponding parametric spaces.
We further introduce symmetric and asymmetric synchrony
indices through the joint representation error of the two
signals (Section 2). Our approach is exemplified for the
EDA, while similar methods can be applied to any signal
of characteristic structure. We evaluate the proposed sparse
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EDA synchrony measures (SESM) on two datasets that
include interactions of romantic couples (Section 3) and
examine those measures in relation to tasks of various
emotional intensity, as well as in association to partners’
relationship attachment style (Section 4). Results indicate
that the SESM scores significantly vary across the different
tasks and can predict avoidance and anxiety indices with
moderate correlation when used in a non-linear regression
framework (Section 5). These are consistent with previous
findings [7], [12] supporting the feasibility of the proposed
approach for quantifying EDA synchrony.

2. Sparse EDA Synchrony Measures (SESM)

EDA is typically decomposed into the tonic part or skin
conductance level (SCL), which refers the signal trends, and
the phasic part or skin conductance responses (SCR), which
are the fluctuations superimposed onto the tonic signal. The
latter usually depicts an abrupt increase and slow recov-
ery, properties which can be captured through appropriately
designed parametric functions. These parametric functions
can serve as the basis of EDA-specific dictionaries in the
framework of sparse representation techniques [17].

We will briefly describe the sparse representation of a
single EDA signal with appropriately designed dictionaries
and demonstrate how the parameters of this model can
be used to derive distance metrics capturing the similarity
between two signals (Section 2.1). We will further discuss
how this can be extended to a joint sparse representation
framework that results in symmetric and asymmetric syn-
chrony indices of two EDA signals (Section 2.2).

2.1. Single-Representation SESM

An EDA signal f ∈ RL can be expressed as a linear
combination of a small number of parametric atoms from
a dictionary D ∈ RL×K . The dictionary contains tonic
and phasic atoms captured with straight lines and Bateman
functions written as follows:

gtonic(t) = ∆0 + ∆ · t (1)

gphasic(t) =
(
e−a(st−t0) − e−b(st−t0)

)
u(t− t0) (2)

where ∆0 ∈ {−20,−10, 1} and ∆ ∈ {−0.010,
−0.009, . . . ,−0.001, 0, 0.01, 0.02, . . . , 0.10} are the offset
and slope of the tonic atoms, and a ∈ {0.2, 0.6, 1, 1.4},
b ∈ {0.4, 0.8, 1.2, 1.6}, s ∈ {0.02, 0.04, . . . , 0.14}, t0 ∈
{0, 10, . . . , 610} are the steepness of recovery, steepness of
onset, time scale and time shift of the phasic atoms.

Sparse decomposition is performed using the orthog-
onal matching pursuit (OMP) [19], [20] because of its
efficiency and theoretical guarantees of correctness [21],
[22]. According to this, a signal f can be approximated as
f ≈ DN · c, where DN ∈ RL×N includes only the small
set of atoms (N�K) selected from OMP and c ∈ RN

represents the vector of corresponding atom coefficients. Let
ΦN ′ = [φ1 . . . φN ′ ] ∈ R4×N ′

be the matrix containing

the parameters of the selected phasic atoms, where each
vector φn ∈ R4 includes the corresponding steepness of
onset, steepness of recovery, time scale and time shift.
Since the representation of an EDA signal also typically
contains tonic atoms, we denote the number of phasic atoms
N ′ differently from the total number of selected atoms N
(N ′<N ). Moreover, EDA fluctuations have been widely
associated with various psychophysiological conditions [23],
[24], thus we give emphasis on the phasic part of the signal
when designing the synchrony indices.

Hence, through sparse decomposition we can represent
two EDA signals as f1 ≈ DN1 · c1 and f2 ≈ DN2 · c2,
where DN1, DN2∈RL×N are the atoms independently
selected for the first and second EDA signals through
OMP, c1, c2∈RN are the corresponding coefficients. Let
ΦN1′∈R4×N1′ , ΦN2′∈R4×N2′ be the matrices including
the parameters of the selected phasic atoms and c′1∈RN1′ ,
c′2∈RN2′ be the coefficients corresponding to these phasic
atoms (N1′,N2′<N ). We define the distance metrics be-
tween the two signals with respect to their parametric repre-
sentation space augmented by the corresponding coefficients
as follows:

DDTW =
1

max(N1′, N2′)
DTW ([ΦN1′ ; c′1], [ΦN2′ ; c′2])

(3)

DL2 =
1

min(N1′, N2′)
‖[ΦN1′ ; c′1]− [ΦN2′ ; c′2]‖2 (4)

where DTW is the similarity measure yielding from the
dynamic time warping between two multidimensional se-
quences and ‖ · ‖2 is the l2-norm between two matrices. In
the above equations, each matrix [ΦNm′ ; c′m] (m=1,2) is
normalized so that the values of its elements range between
0 and 1. During the computation of DL2, if the two EDA
signals are captured by different number of phasic atoms,
we omit the ones with the smallest coefficients from the
representation with the excessive atoms. Based on these dis-
tance metrics, we can further derive the single-representation
synchrony indices as:

S-SESMDTW = 1−DDTW (5)

S-SESML2 = 1−DL2 (6)

The aforementioned l2-norm can be computed for each of
the parameters and coefficients of the phasic atoms sepa-
rately as distance between vectors rather than matrices, i.e.
1- 1

min(N1′,N2′)‖c
′
1 − c′2‖2, etc.

2.2. Joint-Representation SESM

An alternative approach would be to jointly represent
two EDA streams through a common set of atoms from the
dictionary. This can be performed using the simultaneous
orthogonal matching pursuit (SOMP) [25], according to
which two signals can be expressed as f1 ≈ DN · c1 and
f2 ≈ DN · c2, where DN ∈ RL×N includes the atoms
jointly selected for both signals through SOMP and c1,
c2 the corresponding coefficients computed for each signal.



Intuitively, if the signals f1 and f2 are similar to each other,
the common atoms selected through SOMP can reliably
capture their structure, resulting in low representation error.
We can express the synchrony measure between the two
signals as the negative logarithm of their joint representation
error as follows:

J-SESM = − log

[
1

2

(
||f1 − f̃1||2
||f1||2

+
||f2 − f̃2||2
||f2||2

)]
(7)

where f̃1 and f̃2 are the reconstructed signals. This expres-
sion includes the normalized representation error (ranging
between 0 and 1), while the logarithmic scaling helps re-
ducing the skewness towards values of the error closer to 1.
More details on this approach can be found in [26].

In order to incorporate a sense of directionality in the
proposed synchrony measure, we further propose asymmet-
ric indices that capture the extent to which components of
one signal can be reliably used to represent the other. Let
DN1, DN2 be the atoms selected for the first and second
EDA signals independently through OMP. In order to cap-
ture these asymmetric effects, we can use the atoms selected
for the first signal as a basis to decompose the second and
vice-versa, i.e. f̃12 = DN2 · c1 and f̃21 = DN1 · c2. The
asymmetric synchrony scores, denoted as J-SESM12 and
J-SESM21, can be computed as the negative logarithm of
the corresponding representation errors:

J-SESM12 = − log

(
||f1 − f̃12||2
||f1||2

)
(8)

J-SESM21 = − log

(
||f2 − f̃21||2
||f2||2

)
(9)

Intuitively we understand that index J-SESM12 depicts how
well the first EDA signal matches the structure of the second,
and similarly for J-SESM21.

3. Data Description

We examine two datasets that contain interactions of
couples from in-lab visits. Both experimental procedures
include relaxation tasks to establish physiological baseline,
as well as neutral and emotionally intense discussions. EDA
signals were recorded with the Biopac MP150 system at a
sampling rate of 62.5Hz.

The first dataset (referred as Young Couples’ Interac-
tions) includes 35 young-adult dating couples (ages 18-25).
A large portion of the participants were recruited as a part
of a longitudinal study, during which they had come to the
lab as teens. First the couples were introduced to a 10min
Relaxation task, during which they watched a soothing video
while sitting. Then they engaged in a 5-min Date Planning
discussion in which they had to arrange a potential future
date. More emotionally intense tasks included the Change
discussion, in which the participants talked about what they
would like to change in their relationship, and two loss
discussions in which the female (LossF) and male (LossM)

partners described a significant loss in their lives. Each one
of these discussions lasted for 10 mins.

The second dataset (referred as Married Couples’ Inter-
actions) includes 30 married couples (ages 21-47) partici-
pating in a larger study of emotion and behavior. Couples
were first asked to sit quietly in separate rooms (BaslineS)
and at the same room (BaselineT). Each of these relaxation
periods lasted 5 mins. Afterwards they engaged in a casual
discussion (5 mins) in which they had to describe to each
other the main events of their day (Events). More emotion-
ally intense tasks include two discussions (10 mins each)
during which couples talked about the things that the wife
(ChangeW) and the husband (ChangeH) wanted to change
in their marriage. Finally participants were asked to discuss
the beginning of their relationship (History) for 7.5 mins,
which served as a recovery task.

Participants completed self-reports of attachment style,
in order to get a measure of how they relate to their
partner. Attachment is typically described by two orthogonal
dimensions of avoidance and anxiety. Avoidant individuals
depict the tendency to withdraw from closeness and inti-
macy, while anxious individuals tend to feel insecure and
have conflicted thoughts and feelings about their romantic
partners. Attachment was measured through the Experiences
in Close Relationships-Revised (ECR-R) [27] and the Adult
Attachment Questionnaire (AAQ) [28] for the young and
married couples, respectively. For our analysis, avoidance
and anxiety scores were averaged across the two partners
yielding couple-specific attachment descriptors.

4. Contextualizing EDA Synchrony

Contextualizing and interpreting physiological syn-
chrony is a challenging problem, since it is difficult to deter-
mine the ground truth. Taking this into account, synchrony
measures are often indirectly evaluated depending on the
application of interest. We will demonstrate two ways to
assess the usefulness of the proposed SESM indices specific
to the domain of our data. We also will examine how
synchrony varies depending on the emotional intensity of
the task, as well as its association to couples’ attachment
style.

The tasks included in the considered experimental pro-
cedures (Section 3) elicit various emotional responses that
can result in different physiological reactivity and there-
fore distinct synchrony patterns [7]. We examine if there
are significant differences among the group means of the
proposed synchrony measures across tasks through analysis
of variance (ANOVA).

Previous studies have indicated that increased EDA
reactivity in couples has been related to both anxiously
and avoidantly attached individuals, since the former seeks
increased connection, while the latter avoids connection
with others [12]. Based on these findings, we evaluate the
proposed SESM in relation to the couples’ self-reported
attachment.

We first compute the Pearson’s correlation coefficient be-
tween each synchrony index and the anxiety and avoidance



scores. Next we develop a machine learning framework to
predict the attachment ratings using the synchrony measures
as features of the system. A deep neural network (DNN)
architecture is employed to simulate a non-linear regression
function (Fig. 1). The input features included the S-SESM
and J-SESM scores, as defined in (5)-(9). We further added
to this vector the l2-norm of each of the phasic atom
parameters, as well as the l2-norm of the corresponding
coefficients (as described in Section 2.1). This results in
a feature vector x ∈ Rd with d=7 input attributes for
the S-SESM, d=3 for the J-SESM, and d=10 when we
include both. The feature input is followed by two fully
connected feed-forward layers, one with the same number
of neurons as the input attributes (i.e. d) and the next with
half the number of neurons (i.e. bd/2c) , both employing
the hyperbolic tangent as an activation function. The output
is a linear layer with no activation function, since we are
interested in directly predicting the avoidance and anxiety
values as a 2-dimensional vector. The system was trained
in 100 epochs using the ADAM algorithm [29] and a mean
square error loss function as an optimization criterion. A
5-fold cross-validation setup is employed, during which no
data from the same couple were simultaneously available
during training and testing. The Keras implementation [30]
was used with the Theano toolbox [31] as the back-end.

5. Results

EDA representation was performed with a 10 sec analy-
sis window, 5 OMP and SOMP iterations. Previous studies
suggest that this time frame incorporates enough signal
variability, but also preserves computationally tractable im-
plementations [17]. The dictionary contained 63 tonic and
4340 phasic atoms. Synchrony indices for all experiments
were averaged across time frames and across tasks. When
reporting the results for the asymmetric synchrony measures,
we will use J-SESM-FM instead of J-SESM-12, as defined
in (8), that captures the extent to which the atoms selected to
represent the male EDA can be used to represent the female
EDA. Similarly we will employ J-SESM-MF instead of J-
SESM-21, as defined in (9).

Results suggest that the joint SESM indices depict sig-
nificant differences across tasks for both datasets, while
this effect is not significant for the simple SESM scores
(Table 1). For the married couples’ dataset, we further
notice an increasing trend of the joint SESM across tasks
of increasing emotional intensity (Fig. 2b). Similar patterns
apply for the young couples (Fig. 2a). However, in the young
couples’ dataset the relaxation task depicted higher SESM
values compared to the discussions. This can be attributed
to the distinct nature of baseline procedures between the
two datasets, since the first involves a relaxation through a
video stimuli watched at the same time by both partners,
while the second contains rest periods during which the
two partners were not engaged in any activity. Therefore the
increased synchrony of young couples during the relaxation
task might be due to the fact that they are responding to the

TABLE 1. Repeated-measures ANOVA for overall significant differences
of Sparse EDA Synchrony Measures (SESM) across tasks.

Young couples’ interactions
EDA Representation Synchrony Measure F-statistic P-value

Single S-SESM-DTW F(4,175)=1.67 .16
S-SESM-L2 F(4,175)=1.47 .12

Joint
J-SESM F(4,175)=24.12 <.01

J-SESM-FM F(4,175)=14.17 <.01
J-SESM-MF F(4,175)=20.31 <.01

Married couples’ interactions
EDA Representation Synchrony Measure F-statistic P-value

Single S-SESM-DTW F(5,180)=0.4 .85
S-SESM-L2 F(5,180)=0.35 .88

Joint
J-SESM F(5,180)=5.56 <.01

J-SESM-FM F(5,180)=2.32 .05
J-SESM-MF F(5,180)=6.08 <.01

TABLE 2. Pearson’s correlation between single/joint-representation
sparse EDA synchrony measures (S-SESM/J-SESM) and self-reported

attachment ratings (*,† denote p<0.05, 0.1).

Young couples’ interactions
EDA Representation Synchrony Measure Avoidance Anxiety

Single S-SESM-DTW .29† .07
S-SESM-L2 -.43∗ -.43∗

Joint
J-SESM .11 .36∗

J-SESM-FM .13 .33†

J-SESM-MF .10 .27

Married couples’ interactions
EDA Representation Synchrony Measure Avoidance Anxiety

Single S-SESM-DTW -.03 .08
S-SESM-L2 .14 .10

Joint
J-SESM .43∗ .43∗

J-SESM-FM .39∗ .51∗

J-SESM-MF .41∗ .46∗

same stimuli, which causes a steep physiological decrease
for both and therefore high similarity in their EDA signals.

Statistical tests and regression tasks further indicate the
association of the proposed synchrony measures with the
self-reported attachment scores. Joint SESM indices appear
to be significant predictors of attachment (Table 2), sug-
gesting the advantage of simultaneously representing two
streams of data for the task of interest. Anxious attachment
appeared to be more strongly associated with synchrony than
the avoidance measures (Tables 2, 3), a finding consistent
with previous work [12].

6. Conclusion

We propose a framework to quantify EDA synchrony
through the use of sparse decomposition techniques with
appropriately designed signal-specific parametric dictionar-
ies. SESM indices are derived either through the distance
between the parametric spaces of the two signals or through
their joint representation error. Statistical analysis and re-
gression experiments indicate that SESM scores differ across
tasks of various emotional intensity and are associated to
relationship attachment patterns.

Future work will expand the proposed measures to in-
clude more physiological signals, such as the ECG, and will
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Figure 1. Schematic representation of a deep neural network structure that performs non-linear regression for predicting the attachment scores based on
sparse EDA synchrony measures (SESM).
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Figure 2. Joint Sparse EDA Synchrony Measure (J-SESM) across tasks. Error bars represent one standard deviation distance from the mean.

TABLE 3. Pearson’s correlation between ground-truth and predicted
attachment ratings using sparse EDA synchrony measure (SESM) features

in regression experiments (*,† denote p<0.05, 0.1).

Young couples’ interactions
EDA Representation Synchrony Vector Avoidance Anxiety

Single S-SESM .34∗ .12
Joint J-SESM .24 .1

Single & Joint S-SESM & J-SESM .37∗ .38∗

Married couples’ interactions
EDA Representation Synchrony Vector Avoidance Anxiety

Single S-SESM .32† .30
Joint J-SESM .1 .35†

Single & Joint S-SESM & J-SESM .36† .41∗

examine how the current findings can be translated to ambu-
latory data collected from wearable devices in everyday life.
Another future direction includes exploring time dynamics
of physiological synchrony as a function of contextual and
relationship-dependent factors.
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