
Sketch-Based Wireframing

Savinay Narendra1 and Krishna G2

Abstract— This report discusses an approach to improve
the sketch based Wireframing system using machine learning.
With User interfaces being developing away from the classical
WIMP (windows, icons, mouse and pointing) paradigm, existing
wireframing tools are more often a hindrance than a benefit
to the designers in the initial stages. To allow the designers
to have the freedom of sketch, FREE-STYLE was developed
that detects shapes using geometric features and map them
to corresponding functionality. However, this interactive sketch
system lacks a little in recognition. The aim of this report is
to discuss an approach to improve the accuracy of the system
using Machine Learning, so that it can handle variations in the
intended sketches.

I. INTRODUCTION

When professional designers first start thinking about
a visual interface, they often sketch rough pictures of the
screen layouts. Their initial goal is to work on the overall
layout and structure of the components, rather than to refine
the detailed look-and-feel. Designers use these sketches
and other ”low-fidelity techniques” to quickly consider
design ideas, later shifting to interface construction tools
or handing off the design to a programmer. Unfortunately,
this transition forces the designer to specify too many details.

Much of the design literature recommends drawing rough
sketches of design ideas, yet most interface construction
tools, and even prototyping tools, require the designer to
specify much more of the design than a rough sketch allows.
These tools force designers to bridge the gap between how
they think about a design and the detailed specification they
must create to allow the tool to reflect a specialization of
that design.

Another key lesson from the design literature is the value
of iterative design. It is important to iterate quickly in
the early stages of design because that is when radically
different ideas can and should be examined. The need to
turn out new designs quickly is hampered by tools that
require detailed designs. This over-specification can be
tedious and may also lead to a loss of spontaneity. Thus,
the designer may be forced to abandon computerized tools
until later in the design process or forced to change design
techniques in a way that is not conducive to early creative

*This work was not supported by any organization
1Savinay Narendra is with Department of Computer Science and

Engineering, Texas A&M University, College Station, Texas 77843
savinay.90@gmail.com

2Leela Krishna C. G. is with Department of Computer Science
and Engineering, Texas A&M University, College Station, Texas 77843
glk.c.93@tamu.edu

design.

Additionally, research indicates that the use of current
interactive tools in the early stages of development places
too much focus on design details like color and alignment
rather than on the major interface design issues, such as
structure and behavior. Wong found that colleagues give
more useful feedback when evaluating interfaces with a
sketchy look. The designers reported that current user
interface construction tools are a hindrance during the
early stages of interface design. What designers need are
computerized tools that allow them to quickly sketch rough
design ideas.

The performance of a developed interactive web-based
wireframing tool is aimed to improve in this project. It
allows website designers to quickly sketch a website having
certain html elements and in response, our tool develops
a website containing all the sketches that the user drew
converted into the corresponding html element having
custom values. Designers can test the interface at any point,
not just when they finish the design. When they are satisfied
with their early prototypes, they can have FREE-STYLE
transform the sketch into an operational interface using real
widgets, according to a particular look and feel.

Deep learning models can achieve state-of-the-art
accuracy, sometimes exceeding human-level performance.
Models are trained by using a large set of labeled data and
neural network architectures that contain many layers. They
have a state of the art performance on image classification.
Convolutional Neural Networks are very similar to ordinary
Neural Networks. They are made up of neurons that have
learnable weights and biases. Each neuron receives some
inputs, performs a dot product and optionally follows it
with a non-linearity. The whole network expresses a single
differentiable score function: from the raw image pixels on
one end to class scores at the other. And they have a loss
function (e.g. SVM/Softmax) on the last (fully-connected)
layer. ConvNet architectures make the explicit assumption
that the inputs are images, which allows us to encode
certain properties into the architecture. These then make
the forward function more efficient to im- plement and
vastly reduce the amount of parameters in the network.
CNNs when trained with proper regularization can achieve
superior performance on visual object recognition tasks.

We propose to use Convolutional Neural Networks to
identify the sketches drawn. Our approach is to convert



the sketches drawn to images and then feed it into a CNN
model to classify it.

II. RELATED WORK

Even though sketching interfaces are not new, with work
by [1] being one among the first, the invention of mouse
and the ergonomic problems with the light pen relegated
pen-based interactions to limited applications.

Our work draws inspiration from [2] SILK (Sketching
Interfaces Like Krazy), an informal sketching tool that
combines many of the benefits of paper-based sketching
with the merits of current electronic tools. With SILK,
designers can quickly sketch an interface using an electronic
pad and stylus, and SILK recognizes widgets and other
interface elements as the designer draws them. Unlike
paper-based sketching, however, designers can exercise
these elements in their sketchy state. SILK also supports
the creation of storyboards, that is, the arrangement of
sketches to show how design elements behave such as how
a dialog box appears when the user activates a button.
Storyboards are important because they give designers a
way to show colleagues, customers, or end users early on
how an interface will behave. After the designer tests the
interface and iterates the design as needed, SILK transforms
the rough design to a more finished looking implementation.
But, our system resembles a more real world scenario which
automatically generates the website in real- time while
sketching the HTML elements on the canvas. This provides
real- time feedback to the website designers, thereby
improving their efficiency and quality of work. It has a
drawback of being heavy for web applications and takes long
time to give feedback. A fast, simple and compact approach
to recognize scribbles drawn with a stylus is presented by [3].

Our current work is an extension of the work done by
Narendra et. al [4] which uses geometric features of shapes
to recognize the html elements.

A. Problem

A system is developed by recognizing the elements using
the geometric properties [4], but it has restrictive rules placed
for recognition. To remove the restrictive rules, improve the
accuracy of the system and build a more robust system, a
Machine Learning based approach is analyzed and discussed.

III. APPROACH

A. Proposed Solution

The problem of recognizing sketch based designs is
formulated as a Image based recognition problem. The
sketches drawn by the users is processed and saved as an
image, and is recognized using CNNs.

During the data collection phase, users were shown few
symbols and were asked to draw. The symbols, as shown in

Fig. 1. Images of Sketches to be learned

Fig. 2. Architecture of the CNN used

Fig. 1, contains images of sketches for users to be drawn.
The sketches are converted to images using inbuilt package
functions, resized to have the shape (150x150) and saved to
be used during CNN training.

The data collected is divided and fed in to the CNN to
be learned and the model parameters are saved. This model
is then integrated to the system for recognition.

The images are used to train a CNN with the architecture
shown in Fig. 2. The input is fed into 3 Convolution
Layers with RELU activation unit and a Maxpooling layer.
The resultant is then flattened and is passed through a
fully connected layer with RELU activation and dropout
rate of 0.5 to prevent over-fitting. It is then finally fed to
a fully connected layer of 5 classes using soft-max classifier.

Among the few architectures that were experimented
using 5-fold classification, the proposed architecture
achieved highest accuracy with 72.06%.

B. Data

We’ve obtained 143 images in total during the collection
phase. This is divided into Training and testing data to
be fed into CNN that is programmed using Keras[5]. The
data is collected using an online system shown in Fig. 3.
Also the images were augmented using data-augmentation
techniques in Keras. The collected data is then used to train
CNN over 100 epochs and the model is saved.

The saved model is then integrated to our system and
currently is being used to display the probability of the user
sketch belonging to each of the classes. It can be checked at
[6]. We weren’t able to do user study.



Fig. 3. Screen-shot of system used for Data Collection

Fig. 4. Positive Case of the System

IV. RESULTS

After integrating the trained model to the system, some
users were asked to check the performance of the system. A
positive case (an image is recognized as an image) can be
seen in Fig.4, where the sketch is classified correctly with
high probability. A mediocre case (a button is recognized as
a button but also predicts it to be a drop-down with a small
probability) is shown in Fig.5 where the sketch is classified
into 3 classes with middling probability. A negative case
(a drop-down is recognized as navbar and drop-down with
almost equal probabilities) is shown in Fig.6 where the sketch
is classified incorrectly. The system always classified images
correctly while it was confused between images and videos.
Also the system was not able to recognize drop-downs with
a high confidence confusing it sometimes with buttons or
navbars.

A. Discussion

One of the reasons the system is classifying incorrectly
is because of less data and less variation in the data.
The system was unable to learn the classes from the data
provided to it. Also, currently the sketched lines are too thin
and the trained model does not find too many variations in
the pixel color of each image generated from the sketch.
The sketched lines drawn should be thicker to capture so

Fig. 5. Mediocre result of the System

Fig. 6. Negative Case of the System

the model is able to differentiate and recognize different
images

B. Future Work

One way to improvise the system’s accuracy is to gather
more amount of data and use it to train the CNN. Another
direction is to integrate more types of sketches and finally
use them to convert into html elements. We can develop
a system to develop websites right from the sketches.
The height and width of each element can be captured
while being sketched and a html elements can be made on
the webpage using the extreme coordinates of the drawn
sketches. We see this work as a tool for developing websites
from sketches.

V. CONCLUSION

This report analyses an approach to improve the accuracy
of sketch-based wireframing system using machine learning.
A convolution neural network is trained using the images
of the sketches and the learned model is integrated to the
system. This system enables non-techies to design and build
their personal websites effectively. It is examined that the
CNN was unable to learn properly with the amount of data
provided. Next task is to gather more data, with variation
and create a more accurate system.

REFERENCES

[1] I. E. Sutherland, “Sketchpad a man-machine graphical communication
system,” Transactions of the Society for Computer Simulation, vol. 2,
no. 5, pp. R–3, 1964.



[2] J. A. Landay, “Silk: sketching interfaces like krazy,” in Conference
companion on Human factors in computing systems. ACM, 1996, pp.
398–399.

[3] M. J. Fonseca, C. Pimentel, and J. A. Jorge, “Cali: An online scribble
recognizer for calligraphic interfaces,” in AAAI spring symposium on
sketch understanding, 2002, pp. 51–58.

[4] S. Narendra, S. Dey, J. Coad, S. Polsley, and T. Hammond, “Freestyle:
A sketch-based wireframing tool.”

[5] F. Chollet et al., “Keras,” 2015.
[6] K. Narendra, http://a.co/5JQ8nRf, 2017.


