WikiPedia Online Attacking Detection

Xing Zhao && Sirui Li

Introduction & Motivation

- Social media platforms have become rife with undesird effects, especially personal attacking.
- Offensive comments impair user experience and reduce potential customs
- Traditional approaches, such as crowdworkers, is time consuming and expensive.
- Machine learning method can handle data at large scale with high accuracy.

Replying to @CNN

You are a lying, fake news supplying, blackmailing, hypocritical, poor excuse for a news outlet.

3:05 AM - 7 Jul 2017

1 🗸 🖓

Brief Literature Review

- Our work based on Wulczyn's work (2017).
- N-gram is the approach that they applied on data preprocessing
- Logistic regression(LR) and Multi-Layer Perceptrons(MLP) are two basic models implemented by the author

Motivation of Our Project

- Can we use other models, such as SVM and Random Forest? How do they perform?
- Can we use some optimal features rather than N-gram? How do such features work?

Problem Solution

Given a global set of comments, we aim to dectect the personal attacking comments by

- 1. Data Processing:
 - a. N-gram (word level) features (Wulczyn et al. 2017)
 - b. Advanced NLP features, such as sentiment, structure, topic features, etc. (Optimizing)
- 2. Model Designing:
 - a. Logistic Regression(LR) and Multi-Layer Perceptrons(MLP) (Wulczyn et al. 2017)
 - b. Random Forest and SVM (Extra Work)

Data Set Overview

- This dataset collects over 100k annotated discussion comments from Wikipedia in English.
- Every comment has been labeled by around 10 annotators on whether it is a personal attack or not.
- In summary, there are around 14,000 comments annotated as personal attacks out of 115,864 comments in total.

Approach 1: Using N-gram Features

1 time

47.1%

key:ultimatley ,word:ultimatley
key:solout ,word:soloution
key:gayyyyyyyyy ,word:gayyyyyyyyyy
key:privlig ,word:privlige
key:dofficult ,word:dofficult
key:probabil ,word:probabillity

Words that appear only 1 time are typos. Drop them! However, still a big matrix with ~110,000 * 40,000

28.9%

5.6%

2 times

12.5%

5+ times

5 times

4 times

3 times

Approach 1: Using N-gram Features

Such Matrix are extremely sparse!!

	Preprocessing		Feature Size		Memory Size		
	Original N-gram			160,000		~136 GB	
	Drop words appe	opeared only 1 time			40,000	~34 GB	
	Drop words appeared <=2 times			26,000	~23 GB		
We have low of	confidence to						
arop such words.			That means, the data matrix will be 110,000 * 160,000!				

Approach 2: Using Advanced NLP Features

Feature Name	Abbr	Feature Size
Language Structure	LS	100
Communication Sentiment	CS	14
Content Relevance	CR	25
Latent Topic	LT	20
Total (LS+CS+CR + LT)	all	159

Much Smaller than N-gram!!!

Sentiment Analysis: Emotions

Sentiment Analysis: Social Tendencies

Classification Performance 2. Method using Advanced NLP Features

	Log-Reg	SVM	RF	MLP
CS	0.8859	0.8752	0.8851	0.8953
LS	0.7120	0.6022	0.7178	0.7514
CR	0.9052	0.8982	0.8895	0.8875
LT	0.6277	0.6031	0.7997	0.6494
LS-CS	0.8389	0.8465	0.8943	0.8989
LS-CS-CR	0.8657	0.9038	0.9215	0.9330
LS-CR-LT	0.8034	0.8207	0.8799	0.8942
all	0.8646	0.9063	0.9244	0.9356

Comparison

	Feature used	Highest AUC Score	Required Memory Size
Method 1 (<u>drop</u> <u>2 times word</u>)	N-gram	0.9206	36 GB
Method 2 (<u>our</u>)	Advanced NLP	0.9356	0.34 GB

This shows that the new method saves almost 100 times memory and is more precise!!

Conclusions

- 1. <u>We implemented Wulczyn's experiment</u>, and tried one more classification model, Random Forest, which performs better than the two models used in their papers.
- 2. <u>We designed a new approach for detecting personal attacking online using</u> some advanced NLP features, such as language structure, communication sentiment, etc.
- 3. Our new approach gained <u>better classification performance (AUC score)</u> than original N-gram approach.
- 4. Our new approach <u>needed much less memory size</u>. Input matrix scales dramatically and significantly decline from ~110000*40000 to ~110000*159.

Future Work

Can we find an suitable method to translate typos into correct forms? It is another way to reduce the size of N-gram features.

