
Interpretable Learned LASSO

Ye Yuan
ye.yuan@tamu.edu

Xiaohan Chen
chernxh@tamu.edu

Abstract

Solving LASSO (Least Absolute Shrinkage and Selection
Operator) is an essential problem in compressive sensing or
sparse coding. Numerous algorithms have been proposed to
efficiently solve LASSO, such as ISTA (Iterative Shrinkage
Thresholding Algorithm), FISTA (Fast ISTA) and AMP (Ap-
proximated Message Passing). Above iterative algorithms
iteratively perform linear transformation and non-linear
mapping (soft thresholding) on inputs, which can be seen as
a deep neural network with shared, hand-crafted weights.
Therefore, iterative algorithms solving LASSO could be un-
folded into deep models whose weights are trained with
back-propagation provided with training data. However,
once weights in iterative algorithms are changed, good in-
terpretibility of LASSO such as feature selection is lost. In
this paper, we propose a variant of learned iterative algo-
rithms which can also be learned with training data while
trying our best to preserve the interpretibility of LASSO.

1. Introduction
Our starting point is to solve the least absolute shrinkage

and selection operator (LASSO) formulated as below.

min
x

1

2
||y −Ax||22 + λ||x||1 (1)

where x ∈ RN , y ∈ RM , A ∈ RM×N
Solving LASSO is an essential problem in compressive

sensing and sparse coding. Numerous algorithms have been
proposed to solve LASSO. In our project, we are focused
with iterative algorithms, ISTA more specifically, which
is short for ’iterative shrinkage thresholding algorithm’.
Given signal y and dictionary A, ISTA iteratively calculates
latent variable x with

xk+1 =ητ (x
k +

1

L
AT (y −Axk)) (2)

=ητ (By +Wxk), (3)

and x0 = 0, L ≥ λmax(A).
The block diagram of ISTA is shown in Figure 1, in

which ISTA can be seen as a deep neural network with

Figure 1. ISTA block diagram. ISTA reads a signal y as inputs,
iteratively perfomrs linear transformation and non-linear mapping,
which is very similar to a deep neural network.

shared and hand-crafted weights. From this perspective,
[3] proposed a deep model based on ISTA, called Learned
ISTA (LISTA), which unfolds ISTA iterations and truncates
into certain number of steps, feeds training data and tunes
the weights with back-propagation. Emperical results show
that an 8-layer LISTA network can produce the same MSE
as ISTA after thousands of iterations, which enables us to do
some instant application of compressive sensing and sparse
coding.

However, although LISTA is quick, it changes weights
in ISTA, losing good theoretical properties of ISTA such
as feature selection. Here naturally comes the question:
how can we achieve the same performance as deep learn-
ing model while preserving good interpretibility of ISTA?

2. Previous Works
In this section, I will briefly introduce ISTA algorithm

and AMP algorithm and how LISTA and LAMP work.

2.1. ISTA

ISTA (iterative shrinkage thresholding algorithm) is for-
mulated as:

xk+1 =ητ (x
k +

1

L
AT (y −Axk)) (4)

=ητ (By +Wxk), (5)

ISTA is a proximal gradient algorithm, which can be fac-
tored into two steps:

xk+1
prox = xk +

1

L
AT (y −Axk), (6)

xk+1 = minx||x− xk+1
prox||22 + λ||x||1. (7)

Equation (6) is a gradient descent step with respect to
the l2 norm term in equation (1) with step length 1

L . And

1

equation (7) is a proximal step which takes into consider-
ation the l1 norm term in LASSO and introduces the soft
thresholding function

ητ (r) =

 r − τ , r > τ
0 , −τ ≤ r ≤ τ
r + τ , r < τ

(8)

2.2. AMP

AMP (approximated messaging passing) algorithm [2] is
formulated as:

zk = y −Axk + ||x
k||0
M

zk−1

xk+1 = ητk(xk +AT zk)

where τk = α||zk||2√
M

.
AMP is no more than ISTA but a Onsager correc-

tion term ||xk||0
M zk−1 and the threshold τk is time depen-

dent. The Onsager correction term is very powerful, largely
speeding up the convergence of LASSO, shown in Figure 2.

Figure 2. Convergence speed of ISTA and AMP.

2.3. Learned ISTA and Learned AMP

Learned ISTA (LISTA) algorithm was first proposed by
LeCun et al. in 2010. The main philosiphy of LISTA is
to unfold iterative algorithm — ISTA, truncate to certain
number of steps, say T and train the weights or dictionary
in LASSO with training data. The structure of LISTA is
shown in Figure 1.

The same philosiphy can also be applied to AMP al-
gorithm, which will lead to a slightly more complicated
model, named LAMP [1] shown in Figure 3.

Although there is no strict theoretical proof so far, em-
prical results show that LISTA can largely accelerate the
convergence. As you can see in Figure 4.

3. Our Method
In LISTA and LAMP, the estimation of x starts from ori-

gin x0 = 0, which is not a good starting point. A start as

Figure 3. The architecture of learned AMP model.

Figure 4. Convergence speed comparison of AMP, LISTA and
LAMP.

simple as x0 = AT y will be much better than the origin.
This simple thought inspires us that what if we fix the

weights of ISTA but learn the inputs into ISTA given signal
y? Then we come to the idea to use a deep neural network
f : RM → RN to maps signals y to x0 = f(y|ω) as in-
puts to ISTA. After feeding our model with training data
and training it via back-propagation, we expect our model
at least can learn a good mapping with respect to data from
a specific distribution. We will perform some numerical ex-
periments with synthetic data.

Our model is shown in Figure 5.

Figure 5. Our model consists of two parts: initializer and a several
steps iterative algorithm.

The initializer in Figure 5 is a normal neural network,
which reads signal y as input and outputs a initial estimator
of sparse code, x0, formulated as:

I(y;W) : RM → RN , y 7→ x0(y;W)

where W is the weights of initializer. We train this
neural network with training data (xi, yi)

D
i=1 and back-

propagation with respect to loss function

Li(x
i, yi) = ||x̂(x0(yi;W))− xi||22

4. Experiments
We conduct some numerical experiments on our model.

We try initializer with different structures and use ISTA and

2

AMP algorithms as iterative algorithms in Figure 5.

4.1. Experimets Setting

The dimension of signal y is M = 25. The dimension
of sparse code x is N = 50. Entries in sparse code x are
non-zero with propability p = 0.1 independently. And all
non-zero entries obey standard Gaussian distribution. The
dictionary A is sampled from i.i.d. Gaussian distribution
with zero means and standard deviation 1/

√
M . Our prob-

lem is noiseless.

4.2. Experment Results

We implement one-layer initializer with sigmoid, leaky
ReLU, PReLU, and soft thresholding activation and two-
layer initializer with leaky ReLU and PReLU activation,
and concatenate our initializer with one-layer, two-layer,
three-layer, four-layer ISTA and two-layer, three-layer
AMP. We compare the performance of our model with stan-
dard ISTA, standard AMP with zero input, transposition in-
put AT y and pseudo-inverse input AT (AAT)−1y as base
line.

Figure 6 shows performance with ISTA following a
two-layer initializer with leaky ReLU activation compared
with standard ISTA algorithm with zero, transposition and
pseudo-inverse inputs. As you can see, although trans-
position input is not good at first but it converges much
faster than zero input. And as expected, pseudo-inverse is
a much better initialization than zero and transposition in-
puts. However, our model achieves better performance than
all of the above initialization.

Figure 6. The plot of NMSE against iteration with iteration of two-
layer initializer with leaky ReLU activation followed by two-step
ISTA compared with standard ISTA algorithm with zero, transpo-
sition and pseudo-inverse inputs.

We also compare between the performance of initializers
with different structures, shown in Figure 7 and between
the same initializer followed by different number of layers
iterative algorithm, shown in Figure 8

Figure 9 shows comparison of performance between two
and three steps AMP following two-layer initializer with

Figure 7. Compare performance of different initializers.

Figure 8. Compare performance of the same initializer followed
by ISTA with different numbers of layers.

leaky ReLU activation and standard AMP algorithm with
zero, transposition and pseudo-inverse inputs. There are a
lot of interesting phenomenon in this experiment:

• Transposition and pseudo-inverse inputs are not al-
ways good for AMP algorithm. Actually pseudo-
inverse input is not solvable for AMP.

• Deeper initializer doesn’t mean better performance.

5. Conclusions and Futur Work

We propose a variant of learned ISTA and learned AMP
models in which we keep the dictionaries in LASSO un-
changed but learn a better initialization of standard itera-
tive algorithms such as ISTA and AMP to contain the inter-
pretability of LASSO, say feature selection.

Emperical results shows that our model can speed up the
convergence of iterative algorithms to some extent.

For future work, we will need to work more on how the
interpretibility of LASSO is preserved, for which we might
look into the support selection status of intermediate steps
of ISTA and AMP.

3

Figure 9. The plot of NMSE against iteration with iteration of two-
layer initializer with leaky ReLU activation followed by two-step
and three-step AMP compared with standard AMP algorithm with
zero, transposition and pseudo-inverse inputs.

References
[1] M. Borgerding, P. Schniter, and S. Rangan. Amp-inspired

deep networks for sparse linear inverse problems. IEEE Trans-
actions on Signal Processing, 2017.

[2] D. L. Donoho, A. Maleki, and A. Montanari. Message-passing
algorithms for compressed sensing. Proceedings of the Na-
tional Academy of Sciences, 106(45):18914–18919, 2009.

[3] K. Gregor and Y. LeCun. Learning fast approximations of
sparse coding. In Proceedings of the 27th International Con-
ference on Machine Learning (ICML-10), pages 399–406,
2010.

4

