DEEP LEARNING FOR SELF DRIVING CARS

Yash Vardhan Sharma Sangam Jindal Zong-Fu Hsieh

OVERVIEW

- Self Driving Car and its Motivation
- Challenges
- Literature
- Model Description
- Experimental Setup
- Results
- Demo

WHY SELF DRIVING?

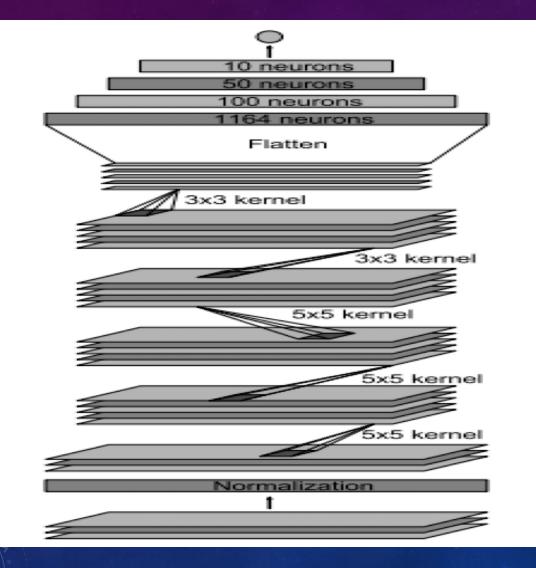
- Emulation of human driver behavior
- Industrial revolution: Intel, BMW, Lyft, Volvo, Audi, Nvidia, Tesla, Uber, Ford, etc.
- Self driving car companies claim that:
 - Safer streets
 - More efficient
 - Save time and tailoring traffic and save fuel
 - Space saving
 - Enhance human productivity
 - Improved mobility for children, elderly and disabled people

CHALLENGES

- Safety
- Obstacles
- Weather
- Driving rules
- Unexpected events
- Complex decisions
 - The Trolley problem
- Cost

LITERATURE REVIEW

- Bojarski, Mariusz, et al. "End to end learning for self-driving cars." *arXiv preprint arXiv:1604.07316* (2016).
- Greenblatt, Nathan A. "Self-driving cars and the law." *IEEE Spectrum* 53.2 (2016): 46-51.
- Bajracharya, Max, et al. "Autonomous off-road navigation with end-to-end learning for the LAGR program." *Journal of Field Robotics* 26.1 (2009): 3-25.
- Hee Lee, Gim, Friedrich Faundorfer, and Marc Pollefeys. "Motion estimation for self-driving cars with a generalized camera." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2013.
- Pomerleau, Dean A. "Alvinn: An autonomous land vehicle in a neural network." *Advances in neural information processing systems*. 1989.


THE TECH

- Problem statement:
 - Design a deep learning framework for self driving car
 - Implementation of "End to End learning for self driving cars" by Nvidia
- A convolutional neural network with 9 layers, 250 thousand parameters
- Three steps to self driving
 - Data generation
 - Training
 - Evaluation

DATA GENERATION

- Udacity's simulator for self driving cars
- Generates a csv file with following features:
 - 3 sets of images (from center, left and right camera on vehicle)
 - Steering angle
 - Speed
 - Throttle
 - Brake

THE NETWORK

Output: vehicle control

Fully-connected layer Fully-connected layer Fully-connected layer

Convolutional feature map 64@1x18

Convolutional feature map 64@3x20

Convolutional feature map 48@5x22

Convolutional feature map 36@14x47

Convolutional feature map 24@31x98

Normalized input planes 3@66x200

Input planes 3@66x200

TESTING & EXPERIMENTATION

- Autonomous mode on Udacity's simulator
- Evaluation metric: Time, the network could follow the road
- Experimentation:
 - Max Pooling
 - Dropout tuning
 - Learning rate
 - Number of convolution layers
- Libraries: Keras, PIL, numpy, sklearn, pandas, socketio, eventlet, flask, etc.

RESULTS

Model	Time
Model in paper	6 min
Dropout : 0.5	1 min 24 sec
Dropout : 0.7	1 min 1 sec
Learning rate: 10e-5	1 min 23 sec
Learning rate: 10e-3	23 sec
4 layer model	2 min 30 sec
Dropout : 0.3	50sec
MaxPooling after 1 layer	30 sec
MaxPooling after 2 layer	12 min 2 sec
MaxPooling after all layers	>20 min

FUTURE WORK

- Improve accuracy
- Train model with real data
- Extend model for the following:
 - Tuning with different activation functions
 - Different weather conditions
 - Lane changing
 - Obstacle detection
 - Driver safety

REFERENCES

- Bojarski, Mariusz, et al. "End to end learning for self-driving cars." *arXiv* preprint arXiv:1604.07316 (2016)
- https://github.com/udacity/self-driving-car-sim
- http://selfdrivingcars.mit.edu/

QUESTIONS