
196 IEEE Signal Processing Magazine   |   September 2017   |

perspectives
Daniel Bone, Chi-Chun Lee, Theodora Chaspari,  

James Gibson, and Shrikanth Narayanan

1053-5888/17©2017IEEE

Human behavior offers a window into 
the mind. When we observe some-
one’s actions, we are constantly in-

ferring his or her mental states—their 
beliefs, intents, and knowledge—a concept 
known as theory of mind. For example: 

■■ “Is a person growing impatient?”
■■ “Are they feeling down?” 
■■ “Are they being truthful?”
■■ “Will they buy my product?”

We can perceive changes in emotion 
and even if someone is intoxicated. The 
basis for our “mind reading” abilities is 
rooted in the influence (conscious and 
subconscious) that our mental state has 
on the cognitive and motor processes that 
control the coordinated production of 
rich, complex behaviors. Our behaviors 
are multimodal and encoded at differ-
ent temporal scales, ranging from rapid 
facial microexpressions or a quick rise 
of vocal pitch to indicate a question, to 
slower body gestures like waving hello.

Behavioral differences across indi-
viduals and changes within a person are 
also critical indicators of behavioral and 
mental health. For instance, softer, slow-
er, and less articulate speech is a progres-
sive symptom of Parkinson’s disease 
(which can improve with treatment) [1], 
and three primary indicators of autism 
spectrum disorder are poor eye contact, 
lack of conversational skills, and an atyp-
ical speech prosody (the rate, rhythm, 
and intonation of speech) [2]. Behavioral 
markers are also relevant to relationship 

quality; for example, extended use of 
second-person singular pronouns (e.g. 
you) during conversational speech has 
been linked to increased levels of blame 
in romantic relationships [3].

The span of mental and behavioral 
health conditions is vast (Table 1) and so 
is the accompanying cost to individu-
als and society at large. The National 
Institute of Mental Health (NIMH) has 
estimated that the total costs of seri-
ous mental illness, affecting 6% of the 
population, is in excess of US$300 bil-
lion a year [4]; this doesn’t even include 
developmental or substance abuse dis-
orders. Aside from financial costs, 
these disorders reduce life expectancy; 
unlike many other health conditions, 
years of life lost due to neurological, 
mental, and behavioral disorders has 
increased recently, representing a ris-
ing burden that will impose new chal-
lenges on the health system [5]. Thus, 
translational research that improves 
aspects of health awareness, access, 

treatment quality, and cost will have a 
profound impact.

The core means of behavioral and 
mental health assessment have changed 
little over the past decades: human evalu-
ation (by direct observation, interview, or 
self-report) is the primary tool. Humans 
are excellent signal processors, having the 
ability to transfer knowledge from related 
experiences and being able to account for, 
and adapt to, context with relative ease. 
But humans also have limitations in their 
perceptual abilities. First, to label “large” 
data sets, an army of human workers may 
spend hundreds of hours meticulously 
annotating videos; this solution does 
not scale with the pace of collected real-
world data. Second, human judgment is 
subjective and idiosyncratic; reaching 
an agreement on qualitative judgments 
such as the level of rapport between indi-
viduals is challenging, and it is unlikely a 
person can precisely estimate quantitative 
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Table 1. The prevalence of selected health conditions in the United States [6]–[9].

Condition Ages Prevalence 

Autism spectrum disorder Children* 1.5% (lifetime)

Posttraumatic stress disorder Adults 3.5% (one year) 

Mood disorders (e.g., depression) Adults 9.5% (one year) 

Alcohol addiction/abuse All 6.6% (one year) 

Illicit drug use (nonmarijuana) All 2.5% (one year) 

Parkinson’s disease ≥80 years old 1.9% (lifetime)

Dementia (e.g., Alzheimer’s disease) ≥60 years old 6.5% (lifetime)

*Typically diagnosed in children but symptoms persist over the life span.

(continued on page 189)
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measures as basic as relative speaking 
times. Additionally, people are not 
consistent in their judgments over time 
due, in part, to changes in mood, focus, 
and fatigue as well as learning effects. Fi-
nally, humans can only see and hear what 
is observable and thus cannot directly 
measure another’s physiology (although 
in many day-to-day interactions, this is 
often for the best).

Signal processing is primed to have 
a transformative impact on behavioral 
science, a data-rich domain comprising 
noisy signal data that holds information 
on individuals’ hidden mental states 
and traits. Clinical experts will always 
be critical to mental health assessment 
and treatment, but computational meth-
ods can now support their efforts with 
time-continuous, objective measures of 
a social scene. In particular, since ex-
perts are unable to constantly observe 
their patients and find quantification of 
behavior challenging, behavioral signal 
processing (BSP) methods can augment 
their abilities [10]. BSP seeks to quan-
tify qualitatively characterized behav-
ioral constructs at scale using low-level 
behavioral measurements.

Formally, the problem that we present 
is that of identifying the hidden attributes 
of the system that modulates the body’s 
signals, uncovered through novel signal 
processing and machine learning on 

large-scale multimodal data (Figure 1). 
Signal processing is the keystone that 
supports this mapping from data to rep-
resentations of behaviors and mental 
states. The pipeline first begins with 
raw signals, such as from visual, audi-
tory, and physiological sensors. Then, 
we need to localize information coming 
from corresponding behavioral chan-
nels, such as the face, body, and voice. 
Next, the signals are denoised and mod-
eled to extract meaningful information 
like the words that are said and patterns 
of how they are spoken. The coordina-
tion of channels can also be assessed 
via time-series modeling techniques. 
Moreover, since an individual’s behav-
ior is not isolated, but influenced by a 
communicative partners’ actions and 
the environment (e.g., interview versus 
casual discussion, home versus clinic), 
temporal modeling must account for 
these contextual effects. Finally, having 
achieved a representation of behavior 
derived from the signals, machine learn-
ing is used to make inferences on mental 
states to support human or autonomous 
decision making.

Why now?
The data ecosystem continues to grow 
and become more integrated into our 
daily lives, enabling multiple opportu-
nities to positively affect human health 

and well-being. Low-cost physiologi-
cal wearables that can derive direct mea-
sures of a person’s internal state are 
increasingly common as are wearable 
vision and audio devices. The medical 
Internet of Things (mIoT) market has 
been projected to be worth US$117 bil-
lion by 2020 [11], representing 40% of 
the total IoT market, but emerging sig-
nal processing research could push that 
value even higher. Signal processing 
has become the critical missing link in 
translating ubiquitous sensors into real 
impact on mental and behavioral health. 
There is an immense need for extract-
ing actionable information from multi-
modal biobehavioral signals. Imagine 
being able to track someone’s complex 
language use in relation to disease state 
over years, the effects of an intervention 
on an autistic child’s social functioning, 
or predicting relationship outcome based 
on how well people control both their 
internal physiology (arousal, body tem-
perature) and their expressions toward a 
spouse during conflicts (e.g., [12]).

Algorithms are now able to handle 
multiple sources of variability in a wide 
range of collected data. Applications 
such as speech recognition and comput-
er vision demonstrate the capabilities of 
handling this mapping from low-level 
noisy signals to midlevel behavioral fea-
tures, and, more frequently, researchers 
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are extending the mapping to higher 
level psychological constructs like af-
fect and empathy. Recent technologi-
cal advances in signal processing and 
machine learning have enabled new 
opportunities, while other possibilities 
will require continued advancement in 
fundamental mathematical foundations 
and algorithm development.

Scientific opportunities

Three settings for BSP
In moving from qualitative descriptions 
to quantitative representations, there 
are three primary settings in which sig-
nal processing and machine learning 
are used to measure human behavior 
(as shown in Table 2). The first takes a 
first-person view of inferring what is hap-
pening in one’s mind in relation to be-
havioral (unobtrusively observable) and 
bodily (measurements often requiring at 
least some level of intrusion) signals: the 
mind-body connection. The current stan-
dard is to use self-report or human ob-
servation of specific behaviors, and then 
condition on known experimental vari-
ables—for example, measuring behavior/
physiology during lying and truth-telling 
in a scientific study of deception. Math-
ematical formalisms can also determine 
the possibilities and limitations contained 
within signals such as the observability, 
controllability, and stability of an under-
lying state description.

A closely related experimental setting 
uses quantified behavior to understand 
the process by which humans perceive 
and make decisions. Signal process-
ing can provide measures that scale, are 
quantitative and objective, and are con-
sistent across time. Moreover, if we can 
identify the behavioral building blocks 
for perception, then we can begin to ask 
how instances are aggregated and weighted 

toward a global decision: is a single salient 
behavior most critical to a perceptual con-
struct, or are all relevant events summed to 
arrive at a decision?

The third setting is that of inter-
action between multiple humans or 
humans and machines. Behavioral sci-
entists are interested in systematically 
modeling the dynamics of multipar-
ticipant processes but often struggle 
to fully capture the inherent complexi-
ties. A rigorous signals and systems ap-
proach to human interactions is needed 
to capture the complexities of interac-
tion dynamics as well as the inherent 
uncertainty in all facets of the process 
(perception/cognition/action) and ul
timately to build the mathematical 
foundations for combining human and 
machine computation such that ma-
chines augment human capabilities, not 
simply replace them.

Interpretable representations
One of the primary reasons that signal 
processing is critical to behavioral com-
putation is interpretability. It is often not 
enough to simply make a decision in 
health care, but the end-to-end system 
must explain how it arrived at such a de-
cision. Decisions on a person’s health are 
so vital that even if a system is able to di-
agnose a disorder with 100% accuracy, if 
that system is a black box such that the 
decision-making processing is unclear, 
health-care providers are highly reluctant 
to trust it. And rightfully so, since there 
are certainly pitfalls to which machine-
learning approaches can succumb.

One way to address this is through a 
top-down approach, which incorporates 
human knowledge into feature genera-
tion and modeling by taking into account 
the structure of the data as well as the 
phenomenon that is being modeled. For 
instance, consider the case of measuring 

vocal arousal, or excitement, which is 
generally expressed vocally by a higher 
pitch, intensity, and high-frequency en-
ergy content. This reliable observation 
has been incorporated into a rule-based 
algorithm that has matched state-of-the-
art performance in cross-corpus vocal 
arousal recognition [13]. Similarly, we 
can quantify affect in any text through 
semantic similarity metrics by leveraging 
a small set of seed words that have been 
carefully annotated by human experts 
[14]. Another knowledge-inspired ap-
proach that will be discussed in later sec-
tions is that of quantifying what is atypical 
about the speech of individuals with au-
tism [15]. Top-down generative approach-
es dominate the neurosciences because 
they afford a mechanistic understanding 
in terms of low-dimensional biophysical 
constructs, and thus signal processing 
techniques have potential for strong con-
tributions (for example, in modeling of 
clinical trajectories in the emerging field 
of computational psychiatry [16]).

Despite their advantages, top-down 
approaches might not be able to take into 
account the entire variability of the data 
space, which is more likely to be incor-
porated through data-driven representa-
tions. Toward this direction, unsupervised 
clustering and feature-learning techniques 
as well as deep and recurrent neural net-
work approaches have been proposed. 
However, risks with bottom-up approaches 
include the limited presence of human ex-
perts guiding these engineering efforts and 
the risk of overfitting to inadequate data—
either in terms of quantity or quality (e.g., 
variable and/or bad recording conditions). 
Semisupervised learning might be an in-
termediate solution that combines labeled 
and unlabeled data to build better learners 
and, at the same time, incorporates directly 
the knowledge if human experts.

Aiding human decision making
Much of the research community’s focus 
has been on developing the core methods 
of behavioral sensing; however, compu-
tational methods don’t need to replace 
humans but instead can augment their 
capabilities especially in complex clinical 
decision making and in understanding 
its impact. A great challenge going for-
ward continues to be interfacing machine 

Table 2. Three settings for BSP.

Setting Description 
Mind-body connection Studying produced behavior in relation to known internal or  

contextual variables. 
Human perception Relating the produced behavior to human perception to explain 

perceptual processes. 
Interaction Quantifying the give-and-take behavioral dynamics that occur  

in human-human or human-machine interaction. 
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computation with human computation. 
Imagine a scenario in which an individ-
ual wants to observe the behavior of her 
employees, patients, or students based on 
video-recorded data. That person may 
currently be limited to manually evalu-
ating several random instances. Instead, 
signal processing could be used to build 
models for the behaviors of interest and 
locate the instances in the data that are 
most relevant, or salient, to an overall 
judgment. One such recent approach is 
to identify salient words using attentional 
recurrent neural networks (RNNs) [17].

Measuring what we can’t see or hear
Aside from overt signals that we freely 
perceive with vision and audition, there 
are covert signals that can reveal other di-
rect insights into a person’s mental state. 
Consider the case of lying: when we lie, 
generally our blood pressure rises, we 
breath faster, our heart rate increases, 
and we sweat (these are the signals that 
a polygraph tracks), all while we attempt 
to express behavioral signals of calmness 
and honesty. This potential mismatch 
between internal state and the related be-
havioral expression has clinical relevance 
as well. Take, for example, the case of 
an individual with moderate-to-severe 
autism spectrum disorder who also dis-
plays self-injurious behavior. Such an 
individual may not give outward indica-
tions of building agitation; but it has been 
shown that, in certain cases, physiological 
monitoring of arousal can indicate an im-
pending episode, which would be critical 
knowledge for care providers. While tele-
metric monitoring of physiological and 
cognitive behavior has been considered 
for years, we are (rapidly) improving the 
sensing and computational tools to make 
sense of these physiological signals and 
act upon it in the moment. The great chal-
lenge currently is to develop robustness in 
the sensors and signal processing.

Multimodal temporal modeling of 
individuals and interactions conditioned 
on context
Most psychological phenomena are com-
plex and multifaceted, therefore requiring 
a multimodal set of information for de-
tecting and quantifying them. Integrating 
multiple sources of data can afford us a 

more complete view of the human state 
but, at the same time, imposes challenges 
in terms of information perception and 
data fusion. Different modalities can be 
complementary, redundant, or even con-
flicting. Multimodal patterns and interac-
tions can also be situation dependent and 
person specific. The conceptualization 
of the acquired multimodal information 
(e.g., through human-derived annota-
tions, self-reports, metadata, etc.) can 
help us identify the most relevant bits and 
streams of information at a given time-
point and for a given situation.

To elaborate on these points, we will 
draw an example from the family studies 
domain, which investigates close rela-
tionships between family members and 
romantic partners. Researchers in this 
domain are particularly interested in the 
way partners experience interpersonal 
conflict since conflict affects quality of 
life, mental health, and physical well-being. 
Recent advances in mIoT and wearable 
technology allow us to capture interperson-
al conflict in everyday life via multimodal 
sensing, enabling answers to a variety of 
questions related to this phenomenon, i.e., 
when and why conflict occurs, whether it 
is efficiently handled, and when it escalates.

Different people experience conflict 
in different ways and through various 
signal cues depending on their perso
nality, family history, and previous 
life experiences. For example, conflict 
in avoidant people might be expressed 
through changes in their physiology, 
while in competing personalities such 
episodes might be apparent through 
acoustic and visual cues. This variability 
is enhanced by other contextual factors, 
such as the individuals’ physical condi-
tions (e.g., medication intake, caffeine/
drug/alcohol use) and locations (e.g., 
home, work, etc.). Taking these into ac-
count, reliable conflict detection systems 
should consider a multimodal stream of 
information (e.g., audio, language, physi-
ology, etc.) complemented by contextual 
data streams (e.g., global positioning sys-
tem location, self-reports of nutrition and 
substance use, measures of body tem-
perature and acceleration); an example 
of such ubiquitous sensing is [12]. Since 
every individual and every couple have a 
different baseline functionality, attention 

should be paid to establishing personal-
ized models through knowledge-driven 
priors (e.g., background of family ag-
gression, previous relationships, etc.) and 
data-dependent approaches (e.g., adapt-
ing system decisions based on data from 
similar participants).

Beyond the typical multimodal feature 
fusion, explicitly capturing the interac-
tion of various modalities within person 
and across people can be very informa-
tive. Aggregate statistics can only provide 
information about the overall relation-
ship between participants but not how it 
evolved. This can still be useful; for ex-
ample, previous work has demonstrated 
that in diagnostic interactions for autism, 
the psychologist—who is conducting a 
semistructured interaction—must adapt 
his or her behavior to the child with 
whom they are interacting [15]. The 
results showed that children with high-
er-severity autism spoke less, while the 
psychologist spoke more; the child spoke 
with higher prosodic variability, as did the 
psychologist; and so on. In fact, the psy-
chologist’s prosodic features were at least 
as predictive of the child’s autism severity 
as those same features from the child.

Forthcoming advances can help in un-
derstanding interaction through dynamic 
modeling (the third BSP setting). It is 
with such models that capture emotional 
and behavioral evolution that computa-
tional tools will gain widespread validity 
and utility. General mathematical models 
that have been considered include dy-
namical systems equations, hidden Mar-
kov models, conditional random fields, 
and long- and short-term deep neural net-
works. Knowledge-driven algorithms are 
also being created. One such example is 
the quantification of behavioral entrain-
ment, or synchrony, which is the mutual 
influence displayed between interacting 
partners; this influence is said to be stron-
ger for more positive interactions, but 
human observers have great difficulty ex-
plaining “how” and “why” some pairs are 
more entrained than others. Hence, Lee 
et al. [18] have proposed a signal similar-
ity metric that computes the convergence 
of two interacting people with respect 
to their representative signal-spaces, 
i.e., principal component (PCA) space. 
Generally, the vocal behavior of partners 
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should become more similar the more 
they are entraining. Specifically, data 
space similarity between two people was 
quantified through the temporal conver-
gence between their corresponding PCA 
axes, i.e., through the angles formed by 
each pair of these principal directions:
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where ,X X1 2  represent expressed be-
haviors of speakers 1 and 2, and W L1  
and W L2  correspond to the reduced rank 
projection matrix of each individual to-
ward their signal spaces; iji  is the angle 
formed between the ith principal com-
ponent of the data space from partici-
pant 1 and the jth principal component 
from participant 2. Lee et al. showed 
that this signal processing-derived syn-
chrony measure related to couples’ at-
tachment styles and in extension can be 
a good indicator of conflict episodes.

Connection between physiology  
and the brain
The true internal state can be thought of as 
a particular configuration of brain func-
tioning resulting from complex neural ac-
tivities within. Proxy measures of neural 
activities can now be captured and pro-
cessed via advances in brain activity sens-
ing, e.g., the recently prevalent functional 
magnetic resonance imaging (fMRI), and 
widely used electrophysiological signals 
(electroencephalography, magnetoen-
cephalography, electromyography, etc.) 
Each of these signals is a loaded signal, 
differing in spatial-temporal resolution 
and utility as a proxy measure of human 
brain activity. Many of these signals re-
quire advanced signal processing meth-
odologies to provide a valid objective 
representation on a particular neural func-
tioning from the raw data. Additionally, 
these measures need to be further con-
ditioned on appropriate expert-designed 
stimulation protocols (i.e., controlling 
factors to address the extreme variability 
within human brain).

Capturing relationships between 
brain functioning, physiological re-
sponses, and expressive behaviors is 
crucial in objectively piecing together 

the intricate interplay the between mind 
and body, and it relies on signal process-
ing. Previous studies typically address 
these three targets separately, but sig-
nal processing will become the “glue” 
between them. For instance, one may 
simultaneously understand the effects 
of signal context (e.g., a high-blaming 
tone of voice) as the trigger of emotional 
stimuli in changing the brain/physio-
logical responses (measured through an-
other set of quantitative proxy metrics) 
as well as the resulting reaction (e.g., 
a stressed, annoyed facial expression). 
Modeling the timing, coordination, and 
appropriateness of each in relation to 
another with foundational mathematics 
will introduce insights that are not easily 
obtained as three isolated components.

Clinical opportunities:  
Enhancing human perception, 
cognition, and action
The initial step in conducting interdis-
ciplinary research in behavioral science 
is to consider what the outcome of the 
research will be. There are two primary 
computational approaches: predict-
ing a label or generating a rule-based 
definition of a label (e.g., the entrain-
ment measure discussed previously). 
What makes this interdisciplinary re-
search even more challenging is the 
researcher often desires his or her work 
to be both computationally meaningful 
and relevant to the application domain; 
however, even a simple, interpretable 
computational system may be revolu-
tionary for the behavioral science do-
main, but might necessitate a reduced 
computational complexity. Neverthe-
less, given the promise of signal pro-
cessing for mental health, we provide a 
short overview of certain clinical oppor-
tunities, with computation ranging from 
simple feature extraction to end-to-end 
human-in-the-loop systems.

Screening and diagnosis
For engineers, a straightforward applica-
tion of technical know-how is to classify 
data, which in this case means diagnos-
ing or screening for a disorder. In some 
cases, this may be a viable approach. 
However, many signal processing tech-
niques are currently limited and trail far 

behind human perception and judgment, 
which means humans have a firm hold 
as the gold standard, and computational 
techniques ought to support their efforts. 
Consider image processing: the world’s 
leading experts have only recently been 
able to robustly identify animals within 
a photograph; but transfer learning of 
those models are currently being applied 
to static medical image-based diagno-
sis. Yet human behavior is much more 
complex, nuanced, and dynamic than a 
static image, so we assert that machines 
have a long distance to go in mimicking 
human perception and action, although 
there are tantalizing possibilities in store 
for the future.

One viable application of machine 
learning has been in developing robust 
diagnostic and screening algorithms. 
Traditionally this has been done through 
both hand-chosen features and statisti-
cal analysis, which does not optimize the 
desired objective function directly—the 
objective function is a combination of 
sensitivity (recall) and specificity (true 
negative rate). Machine learning is a 
perfect fit! Recent work in autism diag-
nostics has shown that machine-learning 
based algorithms can effortlessly fuse 
coded behaviors from multiple diag-
nostic instruments, are tunable, and can 
easily reduce the total coded behavior set 
(feature reduction), effectively shortening 
the administration time [19].

Taking another angle, consider the 
case of “atypical” prosody, a prevalent 
behavioral characteristic marker in neu-
ral and motor disorders, which has been 
said to be the most consistent marker of 
autism across the life span, although it 
varies with age and language level and 
across individuals. Autism researchers 
are currently constrained to analyze 
very small amounts of data with me-
ticulous, time-consuming coding; but 
that coding is often unreliable. One of 
the primary research thrusts of Bone et 
al. has been to provide a computational 
definition of prosody for developmental 
disorders that could be used in conjunc-
tion with human perception of other 
symptoms [15]. For either purely data-
driven or expert systems, one of the 
greatest advantages may be for monitor-
ing behavior over long periods of time.
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Behavior tracking and intervention
Today, metabolic health monitors such 
as Fitbits are very popular; these moni-
tors are based on extremely simple sig-
nals and provide limited metrics, e.g., 
inferring full body movement and thus 
exercise from only the motion of the 
arm. But many people use them as a 
reminder to better their own health via 
behavioral regulation. Thus, they are a 
great example of how one might scale 
a response to meet the demands of the 
global community.

Once we quantify behavior objective-
ly using signal processing and machine 
learning, we can monitor those behavioral 
constructs over time. This opens up im-
mense opportunities to not only assess 
the trajectories leading up to and after 
diagnosis but also to assess the response 
to a pharmacological or behavioral inter-
vention. Furthermore, we can in turn uti-
lize these relevant behavioral measures to 
create novel interventions. For example, 
once we adequately characterize “atypi-
cal” speech prosody as it relates to de-
velopmental disorders, we can create 
personalized computerized interventions 
that would otherwise not be possible. 
One can imagine a scenario in which 
behavioral monitoring of self and others 
is incorporated into ubiquitous comput-
ing devices that provide feedback to the 
wearer; researchers are already consider-
ing the use of tech-glasses to assess the 
emotion of the person they are interacting 
with, but much more will be possible as 
this field evolves.

One example utility of monitoring 
behavior is recent work aiming to moni-
tor a patient’s mental health over time 
based on phone call recordings [20]. In 
this paradigm, a person who was seeing 
a psychiatrist for symptoms of a mental 
health disorder (i.e., major depressive dis-
order, bipolar disorder, schizophrenia, or 
schizoaffective disorder) would frequent-
ly call into an automated system and leave 
an update on their status. The patients re-
sponded to automated questions on how 
they were overall, what was going well, 
and what had been bad. The interdisci-
plinary team employed vocal analytic and 
natural language processing techniques to 
build global and person-specific models 
of how a person’s speech characteristics 

related the psychiatrist’s opinion of their 
emotional state. Initial findings suggest 
that speech features are able to quantify, 
to an extent, how well someone is do-
ing. Relatedly, social network analysis is 
emerging as a potential means to track a 
person’s state over time at scale.

Providing feedback to  
the health-care professional
Another avenue to impact mental and 
behavioral health is through providing 
objective feedback to the provider about 
their own actions, serving as an enabler 
of training. Providing clinicians an in-
depth overview of therapy and diag-
nostic sessions empowers them to both 
track patient progress as well as alter 
their own approaches. 

A good candidate for such a system is 
psychotherapy interactions, due to their 
overall importance in treating mental 
health as well as their semistructured na-
ture. These interactions typically occur 
between a limited number of participants 
(i.e., a therapist-patient dyad) where the 
primary mode of communication is ver-
bal. The words that are spoken can be an-
alyzed for important counselor behaviors 
such as reflections (restating what the 
client says to demonstrate understand-
ing) or the patient’s commitments to be-
havioral change, both of which indicate 
positive addiction counseling sessions 
[21]. Beyond the words that are said, the 
tone of voice, emotion, and politeness 
can be critical feedback for a counselor. 
To enable this goal, an automatic sys-
tem has been developed that segments 
speaker utterances, assigns them based 
on automatically determined role, per-
forms transcription, and, finally, predicts 
behavioral codes. Developing such a tool 
for clinical use requires incorporating 
user interface and experience design ele-
ments that make the experience both use-
ful and intuitive; a tool presented in [22] 
allows clinicians and supervisors to se-
lect individual utterances and review the 
automatically transcribed words as well 
as the behaviors predicted to be present 
in that particular utterance. It also dis-
plays session-level gestalt behaviors and 
behavioral counts to provide a high-level 
overview of important measures such as 
therapist empathy.

Challenges and opportunities in 
formulation and implementation
While we have established that behav-
ioral modeling from signals is a viable 
path forward for mental health, as the 
field grows there are critical questions 
that must be answered. Some of these 
challenges are unique to each problem, 
while others are broadly applicable to 
this interdisciplinary research.

Data collection and modeling
All stages of the behavioral signal pro-
cessing pipeline are intertwined; even the 
problem motivation is not independent 
of the technical ability and process for 
achieving a goal. Therefore, it is also im-
perative that all aspects of BSP problem 
design are adequately addressed. The 
first stage is data collection, for which 
we desire data of high quality and high 
consistency. Since behavior is inherently 
multimodal, we must collect multimodal 
data. This collection should be ecologi-
cally valid or natural and not affecting 
the behavior itself. Another critical factor 
is time. One of the great contributions of 
technology will be longitudinal, time-con-
tinuous monitoring of behavior. Consider 
that a psychologist typically has one hour 
to interact with a child as part of an autism 
diagnostic evaluation. That child may sim-
ply be having a bad day, so assessing prog-
ress at the individual level is obstructed. 
Alternatively, for privacy or data storage 
reasons, sampling often needs to be done 
in a time-sensitive (i.e., “sparse”) fashion.

The second and third stages are anal-
ysis (deriving behavioral features) and 
modeling (mapping features to behav-
ioral constructs), for which the core chal-
lenges stem from the extreme complexity 
of human behavior and the uncertainty 
in the measured signals. No two expres-
sions will produce identical signals due 
to variability within a person and across 
individuals, as well as external sources 
of noise. For example, we never actu-
ally speak a word the same way twice: 
intonation will vary with mood, certain 
syllables will be spoken slightly faster or 
slower, and the channel conditions can 
change between recordings. Computa-
tional systems must be robust to such 
heterogeneity and further must trans-
late across data sets; for example, it has 
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proven surprisingly difficult to translate 
findings in one emotional database to 
another—a formidable hurdle in devel-
oping a real-world system. One viable 
approach is to use transfer learning, 
wherein similar learning tasks are used 
to bias models to learn more quickly 
how to perform related tasks. Moreover, 
analyzing multimodal temporal signals 
comes with the signal processing chal-
lenge of synchronization and addressing 
diversity in timescales.

Another crucial question from the 
behavioral science perspective is how 
to group behaviors and know when be-
havior shifts—and thus a person’s latent 
state (e.g., mood) may have changed. 
Given appropriate multimodal, longi-
tudinal data, computational researchers 
can devise mathematical formulations 
to differentiate normal data variability 
and anomalies from medically pertinent 
behavioral transitions. Relatedly, it is of 
interest to know what types of behaviors 
co-occur and whether there are subpop-
ulations within a disorder that exhibit 
similar tendencies; novel clustering ap-
proaches that deal with disparate data 
types can bring new insights.

Finally, the choice or formulation of 
a target behavior representation is not 
always straightforward. Often we rely 
on human annotation, but this is inher-
ently biased and typically adds another 
layer of imperfection and variability to 
the modeling task. Much care must be 
taken in deciding on a reference behav-
ior of interest. Once a construct is cho-
sen, various mathematical approaches 
have been proposed to leverage the real-
ity that different raters are more reliable 
in unique situations (e.g., [23]).

Building community among 
researchers
The most critical step that computational 
and behavioral science researchers can 
take is to develop intimate, sustained, 
trusting, and productive partnerships 
from the early stages of a cross-dis-
ciplinary research program. Creating 
technological solutions is a strenuous 
process that can be wrought with failure 
points, and these are only multiplied for 
interdisciplinary projects. Collaborators 
should communicate often and foster 

intellectual openness. Furthermore, in 
this age of interdisciplinary research, 
there is an opportunity to construct edu-
cational programs that jointly train col-
laborative researchers in both clinical and 
computational domains. At the intersec-
tion of such collaboration will emerge a 
new team of scientists who have in-depth 
knowledge in multiple domains and will 
lead the charge in technology transfer.

Our greatest standing challenge
This brings us to the most imperative chal-
lenge that we face in BSP: how to go be-
yond human abilities, while maintaining 
human interpretability. Following the stan-
dard of practice, we can use BSP to auto-
mate behavioral coding (e.g., measurement 
of empathy [21]). Such systems can bring 
an expert’s opinion (possibly a collection 
of experts) to a wider audience, automati-
cally, faster, at low cost, and with a certain 
objectivity/consistency. In specific cases, 
systems can be independently employed, 
such as in the example of providing feed-
back to a therapist on empathic skills. But 
in many other cases, the human expert will 
still be next-to-the-loop with their own 
opinion, which may be equally valid to the 
automated one (i.e., when the automated 
system matches inter-human agreement). 
As we move the field forward, we must 
create automated systems that profoundly 
augment human capabilities, effectively 
integrating into normal workflows.

Fully autonomous perceptual sys-
tems would open previously unimagined 
translational potentials. But how can we 
possibly go beyond human perception if 
we don’t use human perception for mod-
eling or validation (noting that these sys-
tems with independent perceptual outputs 
would likely still rely on expert utiliza-
tion)? This is an open challenge for which 
we are only beginning to find problem-
specific solutions. As discussed previously, 
one approach is to define a computational 
construct in a top-down manner, and then 
compare it to peripheral constructs or out-
come measures. Recall Lee et al.’s knowl-
edge-based measure of vocal entrainment 
[18], for which there is no reliable quanti-
tative perceptual measure; validation was 
made indirectly through (hypothesized) 
correlation with couple relationship qual-
ity. Such top-down approaches require a 

certain faith in the system’s design. In fact, 
this approach resembles the design of psy-
chometric instruments; thus, similar meth-
ods of reliability testing and validation can 
be employed. Still, autonomous system 
design is the most challenging and critical 
problem we should address.

Vision for the future
Computational science undoubtedly has 
much to contribute to human behavioral 
study, and this is an exciting time to be a 
signal processing researcher. It will take 
a joint, collaborative effort to solve these 
great challenges posed by mental health 
research and clinical needs. Primary 
computational targets include multimo-
dality and interaction modeling as well 
as behavior (change) prediction. If we can 
overcome the engineering obstacles, we 
can provide enduring scientific advances 
and translational impact in mental health 
domains. Particularly one special aspect 
of signal processing—in the service of im-
proving mental health and performance—
is the curious fact that the brain may itself 
be a signal processor. In other words, 
many of the insights garnered in machine 
learning and signal processing can be ap-
plied to the functioning of the brain in and 
of itself. Beyond the practical benefits of 
data assimilation surveyed above, there 
may be deeper theoretical contributions of 
signal processing to our understanding of 
things like theory of mind.

An achievable dream of ours is to 
see engineering technologies integrated 
within and supporting all aspects of men-
tal health research and care, helping to 
fill scientific knowledge gaps, connecting 
dots, and supporting novel interventions. 
Signal processing will enable access to a 
truly dynamic, patient-centric care. With 
cloud-based architectures and reasonable 
cost, these technologies can operate on 
a global scale, overcoming cultural and 
other boundaries and variables.
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