Practice Problem on Regression Tree

The goal of this problem is to predict the price of a house given its area and number of rooms. We are given the following training data for a regression task, which will be implemented through a binary regression tree.

Sample	Features		Outcome
	Area (sq.ft)	Rooms	Price (\$)
S 1	600	1	800
S2	800	1	1000
S 3	800	2	1100
$\mathbf{S4}$	1000	2	1500

(a) Examine all binary partitions that yield from the values of the feature Area, i.e., $\{R_1 : Area \leq 600, R_2 : Area > 600\}$ and $\{R_1 : Area \leq 800, R_2 : Area > 800\}$.

For the samples that belong to the two regions of each partition, compute the average of the corresponding outcomes y_i . The are also called centers and are denoted as c_1 and c_2 .

Then compute the sum of square error between the sample outcomes of the samples y_i and the centers c_1 and c_2 , i.e., $SSE = \sum_{i \in R_1} (y_i - c_1)^2 + \sum_{i \in R_2} (y_i - c_2)^2$

- If $\{R_1 : Area \le 600, R_2 : Area > 600\}$: $\overline{S1}$ belongs to R_1 . S2, S3, and S4 belong to R_2 . $c_1 = 800, c_2 = \frac{1000+1100+1500}{3} = 1200$ $SSE = (800 - 800)^2 + (1000 - 1200)^2 + (1100 - 1200)^2 + (1500 - 1200)^2 = 140,000$
- If $\{R_1 : Area \le 800, R_2 : Area > 800\}$: $\overline{S1, S2, and S3}$ belong to R_1 . S4 belongs to R_2 . $c_1 = \frac{800+1000+1100}{3} = 967, c_2 = 1500$ $SSE = (800 - 967)^2 + (1000 - 967)^2 + (1100 - 967)^2 + (1500 - 1500)^2 = 63, 267$

(b) Perform the same operation as in (a) for the feature *Rooms*.

The only region segmentation for this variable is $\{R_1 : Rooms = 1, R_2 : Rooms = 2\}$ S1 and S2 belong to R_1 . S3 and S4 belong to R_2 . $c_1 = \frac{800+1000}{2} = 900, c_1 = \frac{1100+1500}{2} = 1300$ $SSE = (800 - 900)^2 + (1000 - 900)^2 + (1100 - 1300)^2 + (1500 - 1300)^2 = 180,000$

(c) Find the partition from features *Area* or *Rooms* that yielded the lowest SSE and place that as a node of the tree. Plot the first level of the tree. For which node(s) can you provide a final value? For which samples you cannot provide a final output?

The partition that gave the lowest SSE was $\{R_1 : Area \leq 800, R_2 : Area > 800\}$, therefore the tree will look as follows:

On the right node of the above tree we can provide an output, since it only contains a single sample.

Although the left node of the tree contains more than one samples, we could still provide an output as the mean of outcomes for $\{S1, S2, S3\}$.

(d) Perform the same operation as in (a-c) to expand the tree for one more level (when needed). Assuming the level 2 is the maximum level of the tree, provide the final decisions in the corresponding nodes.

Now we are only operating on samples $\{S1, S2, S3\}$.

- If $\{R_1 : Area \le 600, R_2 : Area > 600\}$: $\overline{S1}$ belongs to R_1 . S2 and S3 belong to R_2 . $c_1 = 800, c_2 = \frac{1000+1100}{2} = 1050$ $SSE = (800 - 800)^2 + (1000 - 1050)^2 + (1100 - 1050)^2 = 5000$
- If $\{R_1 : Rooms = 1, R_2 : Rooms = 2\}$: S1 and S2 belong to R_1 . S3 belongs to R_2 . $c_1 = \frac{800+1000}{2} = 900, c_2 = 1100$ $SSE = (800 - 900)^2 + (1000 - 900)^2 + (1100 - 1100)^2 = 20,000$

The partition with the lowest SSE is $\{R_1 : Area \leq 600, R_2 : Area > 600\}$, therefore the tree looks as follows:

The error that results from this regression tree for the training data is $\sqrt{(1000 - 1050)^2 + (1100 - 1050)^2}$, since the terminal node for S2 and S3 contained their average.