The goal of this problem is to run a linear perceptron algorithm. Assume that you have three training samples:

- 1. Sample $\mathbf{x_1} = [1, 3]^T$ from Class 1 $(y_1 = 1)$
- 2. Sample $\mathbf{x_2} = [3, 2]^T$ from Class 2 ($y_2 = -1$)
- 3. Sample $\mathbf{x_3} = [4, 1]^T$ from Class 2 $(y_3 = -1)$

The linear perceptron is initialized with a line with corresponding weight $\mathbf{w}(\mathbf{0}) = [-\frac{1}{3}, 1]^T$. In the following, for the sake of simplicity, you will assume that all lines of the perceptron intersect point (0, 0), therefore you do not have to include any intercept w_0 or x_0 in the following calculations.

For $\mathbf{w}(\mathbf{0}) = \left[-\frac{1}{3}, 1\right]$, we have $-\frac{1}{3}x + y = 0 \Rightarrow y = \frac{1}{3}x$, therefore the line is plot in the above figure. Note that the direction of the vector $\mathbf{w}_{\mathbf{0}}$ on the line is the same as the direction of $\mathbf{w}(\mathbf{0})$ starting from (0, 0).

(2) Using the rule $sign(\mathbf{w}(\mathbf{t})^T \mathbf{x_n})$, please indicate in which class are samples $\mathbf{x_1}$, $\mathbf{x_2}$, and $\mathbf{x_3}$ classified using the weight $\mathbf{w}(\mathbf{0})$. Which samples are not correctly classified based on this rule? Note: You have to compute the inner product $\mathbf{w}(\mathbf{0})^T \mathbf{x_n}$, n = 1, 2, 3, and see if it is greater or less than 0.

 $\mathbf{w}(\mathbf{0})^T \mathbf{x_1} = -\frac{1}{3} + 3 = \frac{8}{3} > 0$, therefore sample $\mathbf{x_1}$ is correctly classified using $\mathbf{w}(\mathbf{0})$.

 $\mathbf{w}(\mathbf{0})^T \mathbf{x_2} = -1 + 2 = 1 > 0$, therefore sample $\mathbf{x_2}$ is incorrectly classified using $\mathbf{w}(\mathbf{0})$. $\mathbf{w}(\mathbf{0})^T \mathbf{x_3} = -\frac{4}{3} + 1 = -\frac{1}{3} < 0$, therefore sample $\mathbf{x_3}$ is correctly classified using $\mathbf{w}(\mathbf{0})$.

(3) Using the weight update rule from the linear perceptron algorithm, please find the value of the new weight $\mathbf{w}(1)$. Find and plot the new line corresponding to weight $\mathbf{w}(1)$ in the 2D space.

Note: The update rule is $\mathbf{w}(\mathbf{t} + \mathbf{1}) = \mathbf{w}(\mathbf{t}) + y_s \mathbf{x}_s$, where \mathbf{x}_s and $y_s \in \{-1, 1\}$ is the feature and class label of missclassified sample s.

$$\mathbf{w}(\mathbf{1}) = \mathbf{w}(\mathbf{0}) - \mathbf{x_2} = \left[-\frac{1}{3}, 1\right]^T - [3, 2]^T = \left[-\frac{10}{3}, -1\right]^T.$$

Note the "-" sign in the above equation, which is because the misclassified sample from $\mathbf{w}(\mathbf{0})$, \mathbf{x}_2 , belongs to Class 2 ($y_2 = -1$).

The corresponding line is $-\frac{10}{3}x - y = 0 \Rightarrow y = -\frac{10}{3}x \Rightarrow y = -3.33x$

(4) Using the rule $sign(\mathbf{w}(\mathbf{t})^T \mathbf{x_n})$, please indicate in which class are samples $\mathbf{x_1}$, $\mathbf{x_2}$, and $\mathbf{x_3}$ classified using the weight $\mathbf{w}(\mathbf{1})$. Which samples are not correctly classified based on this rule? **Note:** You have to compute the inner product $\mathbf{w}(\mathbf{1})^T \mathbf{x_n}$, n = 1, 2, 3, and see if it is greater or less than 0.

$$\mathbf{w}(\mathbf{1})^T \mathbf{x_1} = -\frac{10}{3} - 3 = -\frac{19}{3} < 0, \text{ therefore sample } \mathbf{x_1} \text{ is incorrectly classified using } \mathbf{w}(\mathbf{1}).$$
$$\mathbf{w}(\mathbf{1})^T \mathbf{x_2} = -10 - 2 = -12 < 0, \text{ therefore sample } \mathbf{x_2} \text{ is correctly classified using } \mathbf{w}(\mathbf{1}).$$
$$\mathbf{w}(\mathbf{1})^T \mathbf{x_3} = -\frac{40}{3} - 1 = -\frac{43}{3} < 0, \text{ therefore sample } \mathbf{x_3} \text{ is correctly classified using } \mathbf{w}(\mathbf{1}).$$

(5) Using the weight update rule from the linear perceptron algorithm, please find the value of the new weight $\mathbf{w}(2)$. Find and plot the new line corresponding to weight $\mathbf{w}(2)$ in the 2D space. How many samples are correctly classified now?

Note: The update rule is $\mathbf{w}(\mathbf{t} + \mathbf{1}) = \mathbf{w}(\mathbf{t}) + y_s \mathbf{x}_s$, where \mathbf{x}_s and $y_s \in \{-1, 1\}$ is the feature and class label of missclassified sample s.

$$\mathbf{w}(\mathbf{2}) = \mathbf{w}(\mathbf{1}) + \mathbf{x}_{\mathbf{1}} = \left[-\frac{10}{3}, -1\right]^{T} + [1, 3]^{T} = \left[-\frac{7}{3}, 2\right]^{T}$$

Note the "+" sign in the above equation, which is because the misclassified sample from $\mathbf{w}(1)$, \mathbf{x}_1 , belongs to Class 1 ($y_1 = 1$).

The corresponding line is $-\frac{7}{3}x + 2y = 0 \Rightarrow y = \frac{7}{6}x \Rightarrow y = 1.16x$

 $\mathbf{w}(\mathbf{2})^T \mathbf{x_1} = -\frac{7}{3} + 6 = \frac{11}{3} > 0$, therefore sample $\mathbf{x_1}$ is correctly classified using $\mathbf{w}(\mathbf{2})$.

 $\mathbf{w}(\mathbf{2})^T \mathbf{x}_{\mathbf{2}} = -7 + 4 = -3 < 0$, therefore sample $\mathbf{x}_{\mathbf{2}}$ is correctly classified using $\mathbf{w}(\mathbf{2})$.

 $\mathbf{w}(\mathbf{2})^T \mathbf{x_3} = -\frac{28}{3} + 2 = -\frac{22}{3} < 0$, therefore sample $\mathbf{x_3}$ is correctly classified using $\mathbf{w}(\mathbf{2})$. All samples are classified correctly based on $\mathbf{w}(\mathbf{2})$.