
Analytical Solution of Linear Regression CSCE 633

The goal of this problem is to show that there are two equivalent expressions for the residual
sum of squares in linear regression. Then we will compute the analytical solution of the linear
regression problem and prove that the solution is corresponds to a global minimum.

Let our training data be {(x1, y1), . . . , (xN, yN )}, where the vector xn ∈ RD includes the D
features and yn ∈ R is the label of sample n.

The training data can be also written in a matrix/vector notation as:

X =

 1 xT1
...

1 xTN

 =

 1 x11 x12 . . . x1D
...

1 xN1 xN2 . . . xND

 ∈ RN×(D+1) and y = [y1, . . . , yN ]T ∈ RN

where xnd is the dth feature of sample n.

Let’s also assume that the weight of the linear regression model is written as w = [w0, w1, . . . , wD],
where w0 is the bias.

We will show that the following expressions of the RSS error are equivalent.

RSS(w) =
N∑
n=1

[
yn −

(
w0 +

D∑
d=1

wdxnd

)]2

RSS(w) = (y −Xw)T (y −Xw)

y −Xw =


y1
y2
...
yN


︸ ︷︷ ︸
∈RN×1

−


1 x11 x12 . . . x1D
1 x21 x22 . . . x2D

...
1 xN1 xN2 . . . xND


︸ ︷︷ ︸

∈RN×(D+1)

·


w0
w1
w2
...
wD


︸ ︷︷ ︸
∈R(D+1)×1

=


y1 − (w0 + w1x11 + w2x12 + . . .+ wDx1D)
y2 − (w0 + w1x21 + w2x22 + . . .+ wDx2D)

...
yN − (w0 + w1xN1 + w2xN2 + . . .+ wDxND)



=


y1 − (w0 +

∑D
d=1wdx1d)

y2 − (w0 +
∑D

d=1wdx2d)
...

yN − (w0 +
∑D

d=1wdxNd)

 ∈ RN

For any vector x = [x1, . . . , xN ]T ∈ RN (i.e., column vector), xT = [x1, . . . , xN ] ∈ R1×N (i.e.,
row vector), and we have that xTx = x21 + . . .+ x2N ∈ R, therefore:
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RSS(w) = (y −Xw)T (y −Xw)

=

(
y1 −

(
w0 +

D∑
d=1

wdx1d

))2

+ . . .+

(
yN −

(
w0 +

D∑
d=1

wdxNd

))2

=

N∑
n=1

(
yn −

(
w0 +

D∑
d=1

wdxnd

))2

We will minimize the RSS error by setting its first derivative ϑRSS(w)
ϑw to 0.

We will first expand the vector/matrix expression of RSS(w) and use the transpose of matrix
product (AB)T = BTAT .

RSS(w) = (y −Xw)T (y −Xw)

= yTy − yT (Xw)− (Xw)Ty + (Xw)T (Xw)

= yTy − 2(Xw)Ty + (Xw)T (Xw)

= yTy − 2wT (XTy) + wT (XTX)w

We then compute the first-order derivative ϑRSS(w)
ϑw of RSS(w) = (y −Xw)T (y −Xw).

We will take into account that θ(αTx)
θx = θ(xTα)

θx = α and θ(xTAx)
θx = 2Ax, therefore we have:

ϑRSS(w)

ϑw
= −2(XTy) + 2(XTX)w

We finally find the minimum of RSS(w) by solving the equation:

ϑRSS(w)

ϑw
= 0

⇒− 2(XTy) + 2(XTX)w = 0

⇒(XTX)w = (XTy)

⇒w = (XTX)−1XTy

The analytic solution of the linear regression problem is w∗ = (XTX)−1XTy ∈ RD.

We will finally use the second derivative test to prove that the solution w∗ is unique.
We will show that RSS(w) is a convex function by proving the the Hessian matrix of RSS(w)
is positive semi-definite.
The Hessian matrix of RSS(w) is defined as:

HRSS(w) =
θ2RSS(w)

θw2
=

=
θ

θw

(
θRSS(w)

θw

)
=

θ

θw

(
−2(XTy) + 2(XTX)w

)
= 2(XTX)

For every u ∈ RD we have (by applying the transpose product rule and the definition of l2-
norm):

uTHRSS(w)u = 2uT (XTX)u = 2uTXTXu = 2(Xu)TXu = 2‖Xu‖22 ≥ 0

2



Therefore the Hessian HRSS(w) of the RSS error is positive semi-definite, thus RSS(w) is convex

and any local optima is a global minimum. Therefore the solution w∗ = (XTX)−1XTy ∈ RD
is a global minimum of the RSS error of the linear regression problem.
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