

CSCE 633 - Machine Learning

Lecture 1 - Welcome!

Welcome to CSCE 633!

- About this class
- Introduction to Machine Learning
 - What is Machine Learning?
 - Basic concepts

Welcome to CSCE 633!

- About this class
- Introduction to Machine Learning
 - What is Machine Learning?
 - Basic concepts

Welcome to CSCE 633!

- Instructor
 - Theodora Chaspari
 - <u>chaspari@tamu.edu</u> (but use Piazza for quickest reply)
 - Online office Hours: Thursday, 2.30-3.30pm (through the following link)
 - Personal Zoom Link: <u>https://tamu.zoom.us/j/3024683671</u>
- TA
 - Peiman Mohseni, peiman.mohseni@tamu.edu
 - Online office Hours: Thursday, 11.15am-12.15pm (<u>https://tamu.zoom.us/j/</u>95213141515)
 - In-person office Hours: Tuesday 11.15am-12.15pm (EAB-C; shared TA office cubicle on the left entering EAB-C)
- Grader
 - Hong-Jie Chen, <u>raghudv@tamu.edu</u>
 - Online office Hours: Wednesday, 1-2pm (<u>https://tamu.zoom.us/j/</u> 5112240111)

Class websites

- CANVAS
 - https://canvas.tamu.edu/courses/98135
 - Class logistics
 - Class discussions
 - Slides
 - Homework posting, solutions, submissions
 - For sending private messages to me or the TA and the grader
- Google drive (for supplementary material)
 - <u>https://drive.google.com/drive/folders/</u> <u>11_ZWCr_DNqDigzYnSOYT71-f6pRwEF_q?usp=sharing</u>
 - Updated weekly roadmap, code, datasets (when needed)
 - Accessed via your TAMU email account

Textbook and course material

- Lecture notes (on CANVAS)
- Textbook
 - Introduction to Machine Learning, Ethem Alpaydin
 - Learning from Data, Yaser S. Abu-Mostafa
- Supplemental materials (on CANVAS)

Class structure

- 5 homework sets (4x10% + 15% = 55%)
 - 1% penalty on late submission per assignment
 - Late homework submissions can be submitted 1 week after the deadline
- 3 exams (3x15%=45%)
 - Exam 1: October 5th (during class time)
 - Exam 2: November 9th (during class time)
 - Exam 3: November 30th (during class time)

Homework Submission

- All homeworks will be submitted as a **single pdf** on CANVAS
 - The executable code (if required) needs to be included at the end of the pdf
- Programming assignments
 - Recommended languages are Python or Matlab (or Octave)
- Math assignments
 - Please submit solution produced in Latex
 - Or very clear handwritten solution
 - This will help our TA and grader a lot.

Active Learning

- Would you ever take a cardio class without actually participating in it?
- So why take a CS course without practicing the material in class?

Active Learning

- "Anything that involves students in doing things and thinking about the things they are doing" (Bonwell & Eison, 1991)
- "Anything course-related that all students in a class session are called upon to do <u>other than simply watching</u>, <u>listening and</u> <u>taking notes</u>" (Felder & Brent, 2009)
- Audience attention starts to wane after 10-20 mins
- Research suggests that incorporating active learning techniques
 - encourages student engagement
 - reinforces important material, concepts, etc.
 - builds self-esteem
 - creates a sense of community

Active Learning

- Kahoot: free software platform that will help us answering multiple choice questions during class
- <u>https://kahoot.it/#/</u>
- <u>Google Play</u>, <u>Apple Store</u>
- You won't be graded in any of these
- Just a fun way to engage and participate more in class igodot

Outline

- About this class
- Introduction to Machine Learning
 - What is Machine Learning?
 - Basic challenges

Machine learning is everywhere

<u>A possible definition¹</u>

A set of methods that can automatically detect patterns in data, and then use those to predict future data or perform other kinds of decision making under uncertainty.

<u>A more formal definition²</u>

A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T as measured by P improves with experience E

¹ From K.P. Murphy ² From T. Mitchell

https://kahoot.it/#/

Definition: A computer program learns from experience E with respect to some task T and some performance measure P, if its performance on T as measured by P improves with experience E

Question: Suppose your Facebook account watches the users added to your friends' list. Based on that, it learns how to suggest new friends for you. What is task T in this setting?

- A. Classifying a user X according to whether or not you would possibly send them a friend request
- B. Identifying the characteristics of users to which you send a friend request
- C. Computing the percentage of suggested users to whom you actually sent a friend request
- D. All of the above

Definition: A computer program learns from experience E with respect to some task T and some performance measure P, if its performance on T as measured by P improves with experience E

Question: Suppose your Facebook account watches the users added to your friends' list. Based on that, it learns how to suggest new friends for you. What is task T in this setting?

- A. Classifying a user X according to whether or not you would possibly send them a friend request (task T)
- B. Identifying the characteristics of users to which you send a friend request (experience E)
- C. Computing the percentage of suggested users to whom you actually sent a friend request (performance measure P)
- D. All of the above

Key ingredients for a machine learning task

- Data
 - collected from past observations (training data)
- Model
 - devised to capture patterns in data
 - doesn't have to be absolutely true, as long as it is close enough
 - should tolerate randomness & mistakes, i.e. uncertainty
- Prediction
 - apply the model to
 - forecast what is going to happen in the future
 - automatically make a decision for unknown data, etc.

Example: Detecting Patterns

How has the temperature been changing over the last 140 years?

- Generally increasing patterns
- Local oscillations

Example: Describing Patterns

Build a model: fit the data with polynomial function

- Quadratic model is not accurate for every year
- But captures the general trend

Example: Predicting Future Value

What is the temperature of 2010?

- Again the model is not accurate for that specific year
- But it is close enough

The three components of learning

Representation	Evaluation	Optimization
Instances	Accuracy/Error rate	Combinatorial optimization
K-nearest neighbor	Precision and recall	Greedy search
Support vector machines	Squared error	Beam search
Hyperplanes	Likelihood	Branch-and-bound
Naive Bayes	Posterior probability	Continuous optimization
Logistic regression	Information gain	Unconstrained
Decision trees	K-L divergence	Gradient descent
Sets of rules	Cost/Utility	Conjugate gradient
Propositional rules	Margin	Quasi-Newton methods
Logic programs		Constrained
Neural networks		Linear programming
Graphical models		Quadratic programming
Bayesian networks		
Conditional random fields		

a learner must be an evaluation represented in some function assesses the formal language performance of a learner find the highestscoring learner

Source: P. Domingos, 2014

Types of Learning

- Supervised (or predictive) learning
 - learn mapping of inputs to outputs given a set of labelled pairs
 - training data includes desired outputs
 - obvious error metrics, e.g. prediction accuracy
 - cancer prediction, stock prices, house prices, spam detection
- Unsupervised (or descriptive) learning
 - find hidden/interesting structure in data ("knowledge discovery")
 - training data does not include desired outputs
 - less well-defined problem with no obvious error metrics
 - topic modeling, market segmentation, clustering of hand-written digits, news clustering (e.g. Google news)
- Reinforcement learning
 - the learner interacts with the world via actions
 - finds the optimal policy of behavior based on "rewards" it receives
 - robot navigation, game playing, self-driving cars

Supervised Learning

• Learning a mapping from inputs \mathbf{x}_i to outputs y_i given a labelled set of input-output pairs (N samples)

$$\mathcal{D} = \{(\mathbf{x}_i, y_i)\}_{i=1}^N$$

- Data Matrix (N samples, D features) $\mathbf{X} = [\mathbf{x}_1^T \dots \mathbf{x}_N^T] \in \Re^{D \times N} \qquad \mathbf{x}_i \in \Re^{1 \times D}$
- Function approximation, function f is unknown and we approximate it

$$y = f(\mathbf{x})$$

- Classification
 - y_i is categorical or nominal (C classes): $y_i \in \{1, \dots, C\}$
- Regression
 - y_i is a real-valued scalar: $y_i \in \mathbb{R}$

Supervised Learning: Classification

Recognizing types of Iris flowers (by R. Fisher)

Supervised Learning: Classification Recognizing types of Iris flowers (by R. Fisher) setosa "•", versicolor "•", virginica "*"

test sample

K-Nearest Neighbor (K-NN) classifier

• Test sample **x** is assigned to the most common class among its neighbors [N]

$$y = f(\mathbf{x}) = \arg \max_{c=1,...,C} v_c$$

most common
class number of votes
from class c

Brief probability review

Probability

- P(A): probability that event A is true
 - A: "it will rain tomorrow"
 - p(A)=0.2: "there is 20% chance of rain tomorrow"

Conditional probability

- P(A|B): probability of event A, given that event B is true
 - A: "it will rain tomorrow"
 - B: "today is humid", C: "today is windy"
 - p(A|B): "chance of rain tomorrow, given that today is humid", e.g. p(A|B)=0.6
 - p(A|BΛC): "chance of rain tomorrow, given that today is humid and windy", e.g. p(A|BΛC)=0.7

Supervised Learning: Classification

Recognizing types of Iris flowers (by R. Fisher)

setosa "●", versicolor "◆", virginica "★"

The need of probabilistic predictions

- The right class of testing samples is unclear
- Return probabilities to handle ambiguity

$$y = f(\mathbf{x}) = \arg \max_{c=1,\dots,C} p(y = c | \mathbf{x}, \mathcal{D})$$

most **likely** posterior probability: class probability of test sample belonging to class c given input vector **x** and training set D

MAP estimate (maximum a posteriori)

Biomedical applications (e.g. tumor classification) DeepQA for IBM Watson, etc.

Why is it important to model uncertainty?

Question: Given the training data bellow, what would be a reasonable probability that a classifier would assign to the following test samples?

Why is it important to model uncertainty?

Question: Given the training data bellow, what would be a reasonable probability that a classifier would assign to the following test samples?

Why is it important to model uncertainty?

- Required to generalize beyond the training set
- The right class of the testing samples is unclear
- To handle such ambiguous cases we can return a probability instead of a hard 0/1 decision

Supervised Learning: Regression

Predict the price of a used car

- Input x: car attributes (e.g. brand, year, mileage, etc.)
- Output y: price of car
- Model parameters w
- Deterministic linear model

$$y = f(\mathbf{x}|\mathbf{w}) = \mathbf{w}^T \mathbf{x}$$

• Deterministic non-linear model (φ: non-linear function)

$$y = f(\mathbf{x}|\mathbf{w}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x})$$

• Non-linear model - Probabilistic interpretation

$$y = f(\mathbf{x}|\mathbf{w}) = \mathbf{w}^T \boldsymbol{\phi}(\mathbf{x}) + \epsilon, \ \epsilon \sim \mathcal{N}(\mu, \sigma^2)$$

Unsupervised Learning

- Discovering structure (patterns, regularities, etc.) in "unlabelled" data
- Density estimation: we want to see what generally happens and what not

 $p(\mathbf{x_i}|\boldsymbol{ heta})$

instead of $p(y_i | \mathbf{x_i}; \boldsymbol{\theta})$ (supervised learning)

- Clustering
 - identifying sub-populations in the data
- Dimensionality reduction
 - project data to a lower dimensional subspace capturing its essence
- Matrix completion
 - data imputation to infer values of non-existing entries

Unsupervised Learning: Clustering

• Step 1: Estimate the distribution over the number of clusters

 $p(K|\mathcal{D})$

• Step 2: Estimate which cluster each point belongs to

$$z_i^* = \arg \max_{k=1,\dots,K} p(z_i = k | \mathbf{x_i}, \mathcal{D})$$

Unsupervised Learning: Dimensionality Reduction

- Lower dimensional representations can have better predictive power
 - minimized data redundancies
 - avoiding "curse of dimensionality"

Principal component analysis (PCA)

identifies a set of uncorrelated axes that maximize the variance of the data

Unsupervised Learning: Dimensionality Reduction

Example applications of PCA

Eigenfaces

MRI denoising

Noise free

NL-PCA

Unsupervised Learning: Matrix completion

Recommender systems

Customers Who Bought This Item Also Bought

Paperback

First Principles with Python Joel Grus #1 Best Seller (in Data Minina Paperback \$33.99 *Prime*

<

What You Need to Know about Data Mining and... Foster Provost > Wes McKinney Paperback \$27.68 *\Prime* \$37.99 **/***Prime*

Reproducible Research with R and R Studio, Second Edition... Christopher Gandrud Paperback \$51.97 **/***Prime*

Image restoration

Sources: Wang & Jia, 2017; Papandreou, Maragos, & Kokaram, 2008

To sum up

- Machine learning definition
- Key components of learning: representation, evaluation, optimization
- Types of learning systems: supervised & unsupervised
- Challenges in machine learning

Outline

- About this class
- Introduction to Machine Learning
 - What is Machine Learning?
 - Basic challenges

Key Machine Learning Challenges Generalization

- Biggest ML challenge is to generalize beyond the training set
- Never evaluate your ML system on the train data only
 - Use test data instead
- Contamination of the ML system from the test data can occur when:
 - use test through excessive parameter tuning
 - Avoid this with (cross-)validation
- On the positive side 🙂
 - We may not need to fully optimize it, since the objective function is only a proxy of the true one

Key Machine Learning Challenges Overfitting

- The risk of using highly flexible (complicated) models without having enough data
- Ways to avoid overfitting
 - (cross-)validation
 - regularization

Key Machine Learning Challenges Curse of dimensionality

- All intuition fails in higher dimensions
- For a fixed training set, generalization gets harder in larger dimensions
 - harder to systematically search a high-dimensional grid-space
 - harder to accurately approximate a high-dimensional function
- On the positive side 🙂
 - "blessing of non-uniformity": examples aren't usually spread uniformly

Key Machine Learning Challenges Feature Engineering

- Learning is easy if you have informative features for the problem
- Automating the feature engineering process
 - Deep learning systems producing output from raw input

Key Machine Learning Challenges "No-free-lunch" theorem

- "All models are wrong but some models are useful", G. Box, 1987
- There is no single best ML system that works optimally for all kinds of problems
- On the positive side 🙂
 - General assumptions can actually work pretty well, e.g.
 - Similar examples belong to similar classes
 - Independence and smoothness assumptions
- We might need to try lots of different ML systems and learning algorithms to cover the wide variety of real-world data.
- Machine learning is not magic: it can't get something out of nothing, but it can get more from less!

To sum up

- Machine learning definition
- Key components of learning: representation, evaluation, optimization
- Types of learning systems: supervised & unsupervised
- Challenges in machine learning

Readings:

- Alpaydin Ch1, Abu-Mostafa Ch 1
- P. Domingos, "A few things to know about machine learning"

Fun videos to watch:

- <u>https://www.youtube.com/watch?v=R9OHn5ZF4Uo</u>
- www.youtube.com/watch?v=ujxriwApPP4
- <u>https://www.youtube.com/watch?v=Q-Qq8ipUHEI</u>