Welcome to CSCE 633!

- About this class
- Introduction to Machine Learning
 - What is Machine Learning?
 - Basic concepts
Welcome to CSCE 633!

• About this class
• Introduction to Machine Learning
 • What is Machine Learning?
 • Basic concepts
Welcome to CSCE 633!

- Instructor
 - Theodora Chaspari
 - chaspari@tamu.edu (but use Piazza for quickest reply)
 - Online office Hours: Thursday, 2.30-3.30pm (through the following link)
 - Personal Zoom Link: https://tamu.zoom.us/j/3024683671

- TA
 - Peiman Mohseni, peiman.mohseni@tamu.edu
 - Online office Hours: Thursday, 11.15am-12.15pm (https://tamu.zoom.us/j/95213141515)
 - In-person office Hours: Tuesday 11.15am-12.15pm (EAB-C; shared TA office cubicle on the left entering EAB-C)

- Grader
 - Hong-Jie Chen, raghudv@tamu.edu
 - Online office Hours: Wednesday, 1-2pm (https://tamu.zoom.us/j/5112240111)
Class websites

- **CANVAS**
 - https://canvas.tamu.edu/courses/98135
 - Class logistics
 - Class discussions
 - Slides
 - Homework posting, solutions, submissions
 - For sending private messages to me or the TA and the grader

- **Google drive (for supplementary material)**
 - https://drive.google.com/drive/folders/11_ZWCr_DNqDigzYnSOYT71-f6pRwEF_q?usp=sharing
 - Updated weekly roadmap, code, datasets (when needed)
 - Accessed via your **TAMU email account**
Textbook and course material

- Lecture notes (on CANVAS)
- Textbook
 - Introduction to Machine Learning, Ethem Alpaydin
 - Learning from Data, Yaser S. Abu-Mostafa
- Supplemental materials (on CANVAS)
Class structure

- 5 homework sets (4x10% + 15% = 55%)
 - 1% penalty on late submission per assignment
 - Late homework submissions can be submitted 1 week after the deadline
- 3 exams (3x15%=45%)
 - Exam 1: October 5th (during class time)
 - Exam 2: November 9th (during class time)
 - Exam 3: November 30th (during class time)
Homework Submission

• All homeworks will be submitted as a **single pdf** on CANVAS
 • The executable code (if required) needs to be included at the end of the pdf
• Programming assignments
 • Recommended languages are Python or Matlab (or Octave)
• Math assignments
 • Please submit solution produced in Latex
 • Or **very clear** handwritten solution
 • This will help our TA and grader a lot.
Active Learning

- Would you ever take a cardio class without actually participating in it?
- So why take a CS course without practicing the material in class?
Active Learning

• “Anything that involves students in doing things and thinking about the things they are doing” (Bonwell & Eison, 1991)
• “Anything course-related that all students in a class session are called upon to do other than simply watching, listening and taking notes” (Felder & Brent, 2009)
• Audience attention starts to wane after 10-20 mins
• Research suggests that incorporating active learning techniques
 • encourages student engagement
 • reinforces important material, concepts, etc.
 • builds self-esteem
 • creates a sense of community
Active Learning

• Kahoot: free software platform that will help us answering multiple choice questions during class
 • https://kahoot.it/#/
 • Google Play, Apple Store
• You won’t be graded in any of these
• Just a fun way to engage and participate more in class 😊
Outline

• About this class

• Introduction to Machine Learning
 • What is Machine Learning?
 • Basic challenges
Machine learning is everywhere

- Optical character recognition
- Recommendation engines
- Filtering algorithms/news feeds
- Political campaigns
- Surveillance systems
- Facial recognition
- Predictive policing
- Personal assistants: Google Now, Microsoft Cortana, Apple Siri, etc.
- Autonomous ("self-driving") vehicles
- Advertising and business intelligence
What is machine learning?

Big Data: 40 billion webpages, 100 hrs YouTube video uploaded every 1min, 1 million Walmart transactions per hour
What is machine learning?

A possible definition
A set of methods that can automatically detect patterns in data, and then use those to predict future data or perform other kinds of decision making under uncertainty.

A more formal definition
A computer program is said to learn from experience E with respect to some task T and some performance measure P, if its performance on T as measured by P improves with experience E

1 From K.P. Murphy
2 From T. Mitchell
What is machine learning?

https://kahoot.it/#/

Definition: A computer program learns from experience E with respect to some task T and some performance measure P, if its performance on T as measured by P improves with experience E.

Question: Suppose your Facebook account watches the users added to your friends’ list. Based on that, it learns how to suggest new friends for you. What is task T in this setting?

A. Classifying a user X according to whether or not you would possibly send them a friend request
B. Identifying the characteristics of users to which you send a friend request
C. Computing the percentage of suggested users to whom you actually sent a friend request
D. All of the above
What is machine learning?

Definition: A computer program learns from experience E with respect to some task T and some performance measure P, if its performance on T as measured by P improves with experience E.

Question: Suppose your Facebook account watches the users added to your friends’ list. Based on that, it learns how to suggest new friends for you. What is task T in this setting?

A. Classifying a user X according to whether or not you would possibly send them a friend request *(task T)*
B. Identifying the characteristics of users to which you send a friend request *(experience E)*
C. Computing the percentage of suggested users to whom you actually sent a friend request *(performance measure P)*
D. All of the above
Key ingredients for a machine learning task

- **Data**
 - collected from past observations *(training data)*

- **Model**
 - devised to capture patterns in data
 - doesn't have to be absolutely true, as long as it is close enough
 - should tolerate randomness & mistakes, i.e. *uncertainty*

- **Prediction**
 - apply the model to
 - forecast what is going to happen in the future
 - automatically make a decision for unknown data, etc.
Example: Detecting Patterns

How has the temperature been changing over the last 140 years?

- Generally increasing patterns
- Local oscillations
Example: Describing Patterns

Build a model: fit the data with polynomial function

- Quadratic model is not accurate for every year
- But captures the general trend
Example: Predicting Future Value

What is the temperature of 2010?

- Again the model is not accurate for that specific year
- But it is close enough
The three components of learning

<table>
<thead>
<tr>
<th>Representation</th>
<th>Evaluation</th>
<th>Optimization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instances</td>
<td>Accuracy/Error rate</td>
<td>Combinatorial optimization</td>
</tr>
<tr>
<td>- K-nearest neighbor</td>
<td>Precision and recall</td>
<td>Greedy search</td>
</tr>
<tr>
<td>- Support vector machines</td>
<td>Squared error</td>
<td>Beam search</td>
</tr>
<tr>
<td>Hyperplanes</td>
<td>Likelihood</td>
<td>Branch-and-bound</td>
</tr>
<tr>
<td>- Naive Bayes</td>
<td>Posterior probability</td>
<td>Continuous optimization</td>
</tr>
<tr>
<td>- Logistic regression</td>
<td>Information gain</td>
<td>Unconstrained</td>
</tr>
<tr>
<td>Decision trees</td>
<td>K-L divergence</td>
<td>Gradient descent</td>
</tr>
<tr>
<td>Sets of rules</td>
<td>Cost/Utility</td>
<td>Conjugate gradient</td>
</tr>
<tr>
<td>- Propositional rules</td>
<td>Margin</td>
<td>Quasi-Newton methods</td>
</tr>
<tr>
<td>- Logic programs</td>
<td></td>
<td>Constrained</td>
</tr>
<tr>
<td>Neural networks</td>
<td></td>
<td>Linear programming</td>
</tr>
<tr>
<td>Graphical models</td>
<td></td>
<td>Quadratic programming</td>
</tr>
<tr>
<td>- Bayesian networks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Conditional random fields</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- A learner must be represented in some formal language
- An evaluation function assesses the performance of a learner
- Find the highest-scoring learner

Source: P. Domingos, 2014
Types of Learning

• Supervised (or predictive) learning
 • learn mapping of inputs to outputs given a set of labelled pairs
 • training data includes desired outputs
 • obvious error metrics, e.g. prediction accuracy
 • cancer prediction, stock prices, house prices, spam detection

• Unsupervised (or descriptive) learning
 • find hidden/interesting structure in data (“knowledge discovery”)
 • training data does not include desired outputs
 • less well-defined problem with no obvious error metrics
 • topic modeling, market segmentation, clustering of hand-written digits, news clustering (e.g. Google news)

• Reinforcement learning
 • the learner interacts with the world via actions
 • finds the optimal policy of behavior based on “rewards” it receives
 • robot navigation, game playing, self-driving cars
Supervised Learning

• Learning a mapping from inputs x_i to outputs y_i given a labelled set of input-output pairs (N samples)
 \[D = \left\{ (x_i, y_i) \right\}_{i=1}^{N} \]

• Data Matrix (N samples, D features)
 \[X = [x_1^T \ldots x_N^T] \in \mathbb{R}^{D \times N} \quad x_i \in \mathbb{R}^{1 \times D} \]

• Function approximation, function f is unknown and we approximate it
 \[y = f(x) \]

• Classification
 • y_i is categorical or nominal (C classes): \[y_i \in \{1, \ldots, C\} \]

• Regression
 • y_i is a real-valued scalar: \[y_i \in \mathbb{R} \]
Supervised Learning: Classification

Recognizing types of Iris flowers (by R. Fisher)

- setosa “●”
- versicolor “◆”
- virginica “✴”

Scatter plots of all possible feature pairs

Exploratory data analysis (intuition)
Supervised Learning: Classification

Recognizing types of Iris flowers (by R. Fisher)

setosa “●”, versicolor “✦”, virginica “✴”

K-Nearest Neighbor (K-NN) classifier

- Test sample x is assigned to the most common class among its neighbors [N]

$$y = f(x) = \arg \max_{c=1,\ldots,C} v_c$$

most common class

number of votes from class c
Brief probability review

Probability

• $P(A)$: probability that event A is true
 • A: “it will rain tomorrow”
 • $p(A)=0.2$: “there is 20% chance of rain tomorrow”

Conditional probability

• $P(A|B)$: probability of event A, given that event B is true
 • A: “it will rain tomorrow”
 • B: “today is humid”, C: “today is windy”
 • $p(A|B)$: “chance of rain tomorrow, given that today is humid”, e.g. $p(A|B)=0.6$
 • $p(A|B \land C)$: “chance of rain tomorrow, given that today is humid and windy”, e.g. $p(A|B \land C)=0.7$
Supervised Learning: Classification

Recognizing types of Iris flowers (by R. Fisher)

setosa “●”, versicolor “◆”, virginica “✴”

The need of probabilistic predictions

- The right class of testing samples is unclear
- Return probabilities to handle ambiguity

\[y = f(x) = \arg \max_{c=1, \ldots, C} p(y = c|x, D) \]

most likely class

posterior probability:
probability of test sample belonging to class c given input vector x and training set D

MAP estimate (maximum a posteriori)

Biomedical applications (e.g. tumor classification)
DeepQA for IBM Watson, etc.
Why is it important to model uncertainty?

Question: Given the training data below, what would be a reasonable probability that a classifier would assign to the following test samples?

![Training Set D](image1.png)

- **Class A**
 - Blue squares
 - Red circles
 - Green circles
 - Yellow ellipses
 - Blue stars

- **Class B**
 - Red triangles
 - Green diamonds
 - Yellow ellipses
 - Red arrows
 - Green stars

Test Set

- **Test sample s1:**
 - **Test sample s2:**

 - **A.** \(P(s1 \in A \mid D) = 0.9, \ P(s2 \in A \mid D) = 1 \)
 - **B.** \(P(s1 \in B \mid D) = 0.9, \ P(s2 \in B \mid D) = 0.1 \)
 - **C.** \(P(s1 \in B \mid D) = 0.9, \ P(s2 \in A \mid D) = 0.5 \)
 - **D.** None of the above
Why is it important to model uncertainty?

Question: Given the training data below, what would be a reasonable probability that a classifier would assign to the following test samples?

- **Training Set D**
 - Class A
 - Class B

- **Test Set**
 - Test sample s1:
 - A. $P(s1 \in A \mid D) = 0.9$, $P(s2 \in A \mid D) = 1$
 - Test sample s2:
 - B. $P(s1 \in B \mid D) = 0.9$, $P(s2 \in B \mid D) = 0.1$
 - C. $P(s1 \in B \mid D) = 0.9$, $P(s2 \in A \mid D) = 0.5$
 - D. None of the above

Correct is C
Why is it important to model uncertainty?

- Required to generalize beyond the training set
- The right class of the testing samples is unclear
- To handle such ambiguous cases we can return a probability instead of a hard 0/1 decision
Supervised Learning: Regression

Predict the price of a used car

• Input x: car attributes (e.g. brand, year, mileage, etc.)
• Output y: price of car
• Model parameters w

• Deterministic linear model
 \[y = f(x|w) = w^T x \]

• Deterministic non-linear model (ϕ: non-linear function)
 \[y = f(x|w) = w^T \phi(x) \]

• Non-linear model - Probabilistic interpretation
 \[y = f(x|w) = w^T \phi(x) + \epsilon, \quad \epsilon \sim \mathcal{N}(\mu, \sigma^2) \]
Unsupervised Learning

- Discovering structure (patterns, regularities, etc.) in “unlabelled” data
- Density estimation: we want to see what generally happens and what not
 \[p(x_i|\theta) \]
 instead of \(p(y_i|x_i; \theta) \) (supervised learning)

- Clustering
 - identifying sub-populations in the data
- Dimensionality reduction
 - project data to a lower dimensional subspace capturing its essence
- Matrix completion
 - data imputation to infer values of non-existing entries
Unsupervised Learning: Clustering

- Step 1: Estimate the distribution over the number of clusters
 \[p(K|D) \]
- Step 2: Estimate which cluster each point belongs to
 \[z_i^* = \arg \max_{k=1,\ldots,K} p(z_i = k|x_i, D) \]
Unsupervised Learning: Dimensionality Reduction

- Lower dimensional representations can have better predictive power
 - minimized data redundancies
 - avoiding “curse of dimensionality”

Figure 1.9

(a) A set of points that live on a 2d linear subspace embedded in 3d. The solid red line is the first principal component direction. The dotted black line is the second PC direction.

(b) 2D representation of the data. Figure generated by *pcaDemo3d*.

Principal component analysis (PCA)

identifies a set of uncorrelated axes that maximize the variance of the data
Unsupervised Learning: Dimensionality Reduction

Example applications of PCA

Eigenfaces

MRI denoising

Noisy

Noise free

NL-PCA
Unsupervised Learning: Matrix completion

Recommender systems

<table>
<thead>
<tr>
<th>users</th>
<th>1</th>
<th>?</th>
<th>3</th>
<th>5</th>
<th>?</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>1</td>
<td>?</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>5</td>
<td>?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Customers Who Bought This Item Also Bought

- Data Science from Scratch: First Principles with Python
 - Joel Grus
 - 4 out of 5
 - Paperback: $33.99

- Python for Data Analysis: Data Wrangling with Pandas, NumPy, and Scikit-Learn
 - Wes McKinney
 - Paperback: 118 pages
 - $27.88

- Data Science for Business: What You Need to Know about Data Mining and Data Science
 - Foster Provost
 - Paperback: 135 pages
 - $37.99

- Reproducible Research with R and R Studio, Second Edition
 - Christopher Gandrud
 - Paperback: 379 pages
 - $51.97

Image restoration

Sources: Wang & Jia, 2017; Papandreou, Maragos, & Kokaram, 2008
To sum up

- Machine learning definition
- Key components of learning: representation, evaluation, optimization
- Types of learning systems: supervised & unsupervised
- Challenges in machine learning
Outline

• About this class

• Introduction to Machine Learning
 • What is Machine Learning?
 • Basic challenges
Key Machine Learning Challenges

Generalization

- Biggest ML challenge is to generalize beyond the training set
- Never evaluate your ML system on the train data only
 - Use test data instead
- Contamination of the ML system from the test data can occur when:
 - Use test through excessive parameter tuning
 - Avoid this with (cross-)validation
- On the positive side 😊
 - We may not need to fully optimize it, since the objective function is only a proxy of the true one
Key Machine Learning Challenges
Overfitting

- The risk of using highly flexible (complicated) models without having enough data
- Ways to avoid overfitting
 - (cross-)validation
 - regularization

Example of polynomial fit
Key Machine Learning Challenges

Curse of dimensionality

- All intuition fails in higher dimensions
- For a fixed training set, generalization gets harder in larger dimensions
 - harder to systematically search a high-dimensional grid-space
 - harder to accurately approximate a high-dimensional function
- On the positive side 😊
 - “blessing of non-uniformity”: examples aren’t usually spread uniformly
Key Machine Learning Challenges

Feature Engineering

- Learning is easy if you have informative features for the problem
- Automating the feature engineering process
 - Deep learning systems producing output from raw input

Source: Baidu
Key Machine Learning Challenges

“No-free-lunch” theorem

• “All models are wrong but some models are useful”, G. Box, 1987

• There is no single best ML system that works optimally for all kinds of problems

• On the positive side 😊
 • General assumptions can actually work pretty well, e.g.
 • Similar examples belong to similar classes
 • Independence and smoothness assumptions

• We might need to try lots of different ML systems and learning algorithms to cover the wide variety of real-world data.

• Machine learning is not magic: it can’t get something out of nothing, but it can get more from less!
To sum up

- Machine learning definition
- Key components of learning: representation, evaluation, optimization
- Types of learning systems: supervised & unsupervised
- Challenges in machine learning

Readings:
- Alpaydin Ch1, Abu-Mostafa Ch 1
- P. Domingos, “A few things to know about machine learning”

Fun videos to watch:
- https://www.youtube.com/watch?v=R9OHN5ZF4Uo
- www.youtube.com/watch?v=ujxriwApPP4
- https://www.youtube.com/watch?v=Q-Qq8ipUHEI