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CSCE 633 - Machine Learning
Lecture 1 - Welcome!
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Welcome to CSCE 633!

• About this class 

• Introduction to Machine Learning 
• What is Machine Learning? 
• Basic concepts
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Welcome to CSCE 633!
• Instructor 

• Theodora Chaspari 
• chaspari@tamu.edu (but use Piazza for quickest reply) 
• Online office Hours: Thursday, 2.30-3.30pm (through the following link) 
• Personal Zoom Link: https://tamu.zoom.us/j/3024683671  

• TA 
• Peiman Mohseni, peiman.mohseni@tamu.edu   
• Online office Hours: Thursday, 11.15am-12.15pm (https://tamu.zoom.us/j/

95213141515)  
• In-person office Hours: Tuesday 11.15am-12.15pm (EAB-C; shared TA office 

cubicle on the left entering EAB-C) 

• Grader 
• Hong-Jie Chen, raghudv@tamu.edu  
• Online office Hours: Wednesday, 1-2pm (https://tamu.zoom.us/j/

5112240111)
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Class websites

• CANVAS 
• https://canvas.tamu.edu/courses/98135  
• Class logistics 
• Class discussions 
• Slides 
• Homework posting, solutions, submissions 
• For sending private messages to me or the TA and the grader 

• Google drive (for supplementary material) 
• https://drive.google.com/drive/folders/

11_ZWCr_DNqDigzYnSOYT71-f6pRwEF_q?usp=sharing   
• Updated weekly roadmap, code, datasets (when needed) 
• Accessed via your TAMU email account
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Textbook and course material
• Lecture notes (on CANVAS) 

• Textbook 

• Introduction to Machine Learning, Ethem Alpaydin 

• Learning from Data, Yaser S. Abu-Mostafa 

• Supplemental materials (on CANVAS)
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Class structure
• 5 homework sets (4x10% + 15% = 55%) 

• 1% penalty on late submission per assignment 

• Late homework submissions can be submitted 1 week after 

the deadline 

• 3 exams (3x15%=45%) 

• Exam 1: October 5th (during class time) 

• Exam 2: November 9th (during class time) 

• Exam 3: November 30th (during class time)
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Homework Submission

• All homeworks will be submitted as a single pdf on CANVAS  

• The executable code (if required) needs to be included at 

the end of the pdf 

• Programming assignments 

• Recommended languages are Python or Matlab (or Octave) 

• Math assignments 

• Please submit solution produced in Latex 

• Or very clear handwritten solution 

• This will help our TA and grader a lot.
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Active Learning

9

• Would you ever take a cardio class without actually participating in it? 

• So why take a CS course without practicing the material in class?



Active Learning
• “Anything that involves students in doing things and thinking 

about the things they are doing” (Bonwell & Eison, 1991) 

• “Anything course-related that all students in a class session are 

called upon to do other than simply watching, listening and 

taking notes” (Felder & Brent, 2009) 

• Audience attention starts to wane after 10-20 mins 

• Research suggests that incorporating active learning techniques 

• encourages student engagement 

• reinforces important material, concepts, etc. 

• builds self-esteem 

• creates a sense of community
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Active Learning
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• Kahoot: free software platform that will help us answering 

multiple choice questions during class 

• https://kahoot.it/#/ 

• Google Play, Apple Store 

• You won’t be graded in any of these 

• Just a fun way to engage and participate more in class 🙂

https://kahoot.it/#/
https://play.google.com/store/apps/details?id=no.mobitroll.kahoot.android&hl=en
https://itunes.apple.com/us/app/kahoot-play-fun-learning-games/id1131203560?mt=8
https://kahoot.it/#/
https://play.google.com/store/apps/details?id=no.mobitroll.kahoot.android&hl=en
https://itunes.apple.com/us/app/kahoot-play-fun-learning-games/id1131203560?mt=8


Outline

• About this class 

• Introduction to Machine Learning 
• What is Machine Learning? 
• Basic challenges
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Machine learning is everywhere
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What is machine learning?

Big Data: 40 billion webpages, 100 hrs YouTube video 
uploaded every 1min, 1 million Walmart transactions per hour 14



What is machine learning?

A possible definition1 

A set of methods that can automatically detect patterns 
in data, and then use those to predict future data or 
perform other kinds of decision making under 
uncertainty. 

A more formal definition2 
A computer program is said to learn from experience E 
with respect to some task T and some performance 
measure P, if its performance on T as measured by P 
improves with experience E 

1 From K.P. Murphy 
2 From T. Mitchell
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What is machine learning?
https://kahoot.it/#/ 

Definition: A computer program learns from experience E with 
respect to some task T and some performance measure P, if its 
performance on T as measured by P improves with experience E 

Question: Suppose your Facebook account watches the users added 
to your friends’ list. Based on that, it learns how to suggest new 
friends for you. What is task T in this setting? 

A. Classifying a user X according to whether or not you would 
possibly send them a friend request 

B. Identifying the characteristics of users to which you send a 
friend request  

C. Computing the percentage of suggested users to whom you 
actually sent a friend request 

D. All of the above
16
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What is machine learning?
Definition: A computer program learns from experience E with 
respect to some task T and some performance measure P, if its 
performance on T as measured by P improves with experience E 

Question: Suppose your Facebook account watches the users added 
to your friends’ list. Based on that, it learns how to suggest new 
friends for you. What is task T in this setting? 

A. Classifying a user X according to whether or not you would 
possibly send them a friend request (task T) 

B. Identifying the characteristics of users to which you send a 
friend request (experience E) 

C. Computing the percentage of suggested users to whom you 
actually sent a friend request (performance measure P) 

D. All of the above
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Key ingredients for a machine learning task

• Data 

• collected from past observations (training data) 

• Model 

• devised to capture patterns in data 

• doesn't have to be absolutely true, as long as it is close enough 

• should tolerate randomness & mistakes, i.e. uncertainty 

• Prediction 

• apply the model to 

• forecast what is going to happen in the future 

• automatically make a decision for unknown data, etc.
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Example: Detecting Patterns

How has the temperature been changing over the last 140 years?

Overview of machine learning What is machine learning?

Example: detect patterns

How the temperature has been changing in the last 140 years?

Patterns

Seems going up

there seems to be repeated periods of going up and down.

Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) August 28, 2014 20 / 30

• Generally increasing patterns 

• Local oscillations 
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Example: Describing Patterns

Build a model: fit the data with polynomial function

• Quadratic model is not accurate for every year 

• But captures the general trend

Overview of machine learning What is machine learning?

How do we describe the pattern?

Build a model: fit the data with a polynomial function

The model is not accurate for individual years

But collectively, the model captures the major trend

Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) August 28, 2014 21 / 30

20



Example: Predicting Future Value

What is the temperature of 2010?

• Again the model is not accurate for that specific year 

• But it is close enough

Overview of machine learning What is machine learning?

Predicting future

What is temperature of 2010?

Again, the model is not accurate for that specific year

But then, it is close to the actual one

Drs. Sha & Liu ({feisha,yanliu.cs}@usc.edu) CSCI567 Machine Learning (Fall 2014) August 28, 2014 22 / 30 21



The three components of learning
Table 1: The three components of learning algorithms.

Representation Evaluation Optimization
Instances Accuracy/Error rate Combinatorial optimization

K-nearest neighbor Precision and recall Greedy search
Support vector machines Squared error Beam search

Hyperplanes Likelihood Branch-and-bound
Naive Bayes Posterior probability Continuous optimization
Logistic regression Information gain Unconstrained

Decision trees K-L divergence Gradient descent
Sets of rules Cost/Utility Conjugate gradient

Propositional rules Margin Quasi-Newton methods
Logic programs Constrained

Neural networks Linear programming
Graphical models Quadratic programming

Bayesian networks
Conditional random fields

with one branch for each feature value, and have class predic-
tions at the leaves. Algorithm 1 shows a bare-bones decision
tree learner for Boolean domains, using information gain and
greedy search [21]. InfoGain(xj ,y) is the mutual information
between feature xj and the class y. MakeNode(x,c0,c1) re-
turns a node that tests feature x and has c0 as the child for
x = 0 and c1 as the child for x = 1.

Of course, not all combinations of one component from each
column of Table 1 make equal sense. For example, dis-
crete representations naturally go with combinatorial op-
timization, and continuous ones with continuous optimiza-
tion. Nevertheless, many learners have both discrete and
continuous components, and in fact the day may not be
far when every single possible combination has appeared in
some learner!

Most textbooks are organized by representation, and it’s
easy to overlook the fact that the other components are
equally important. There is no simple recipe for choosing
each component, but the next sections touch on some of the
key issues. And, as we will see below, some choices in a
machine learning project may be even more important than
the choice of learner.

3. IT’S GENERALIZATION THAT COUNTS
The fundamental goal of machine learning is to generalize
beyond the examples in the training set. This is because,
no matter how much data we have, it is very unlikely that
we will see those exact examples again at test time. (No-
tice that, if there are 100,000 words in the dictionary, the
spam filter described above has 2100,000 possible different in-
puts.) Doing well on the training set is easy (just memorize
the examples). The most common mistake among machine
learning beginners is to test on the training data and have
the illusion of success. If the chosen classifier is then tested
on new data, it is often no better than random guessing. So,
if you hire someone to build a classifier, be sure to keep some
of the data to yourself and test the classifier they give you
on it. Conversely, if you’ve been hired to build a classifier,
set some of the data aside from the beginning, and only use
it to test your chosen classifier at the very end, followed by
learning your final classifier on the whole data.

Algorithm 1 LearnDT(TrainSet)

if all examples in TrainSet have the same class y∗ then
return MakeLeaf(y∗)

if no feature xj has InfoGain(xj ,y) > 0 then
y∗ ← Most frequent class in TrainSet
return MakeLeaf(y∗)

x∗ ← argmaxxj InfoGain(xj ,y)
TS0 ← Examples in TrainSet with x∗ = 0
TS1 ← Examples in TrainSet with x∗ = 1
return MakeNode(x∗, LearnDT(TS0), LearnDT(TS1))

Contamination of your classifier by test data can occur in
insidious ways, e.g., if you use test data to tune parameters
and do a lot of tuning. (Machine learning algorithms have
lots of knobs, and success often comes from twiddling them
a lot, so this is a real concern.) Of course, holding out
data reduces the amount available for training. This can
be mitigated by doing cross-validation: randomly dividing
your training data into (say) ten subsets, holding out each
one while training on the rest, testing each learned classifier
on the examples it did not see, and averaging the results to
see how well the particular parameter setting does.

In the early days of machine learning, the need to keep train-
ing and test data separate was not widely appreciated. This
was partly because, if the learner has a very limited repre-
sentation (e.g., hyperplanes), the difference between train-
ing and test error may not be large. But with very flexible
classifiers (e.g., decision trees), or even with linear classifiers
with a lot of features, strict separation is mandatory.

Notice that generalization being the goal has an interesting
consequence for machine learning. Unlike in most other op-
timization problems, we don’t have access to the function
we want to optimize! We have to use training error as a sur-
rogate for test error, and this is fraught with danger. How
to deal with it is addressed in some of the next sections. On
the positive side, since the objective function is only a proxy
for the true goal, we may not need to fully optimize it; in
fact, a local optimum returned by simple greedy search may
be better than the global optimum.

a learner must be 
represented in some 

formal language

an evaluation 
function assesses the 

performance of a 
learner

find the highest-
scoring learner

Source: P. Domingos, 2014
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Types of Learning
• Supervised (or predictive) learning 

• learn mapping of inputs to outputs given a set of labelled pairs 

• training data includes desired outputs 

• obvious error metrics, e.g. prediction accuracy 

• cancer prediction, stock prices, house prices, spam detection

23

• Reinforcement learning 

• the learner interacts with the world via actions 

• finds the optimal policy of behavior based on “rewards” it receives 

• robot navigation, game playing, self-driving cars

• Unsupervised (or descriptive) learning 

• find hidden/interesting structure in data (“knowledge discovery”) 

• training data does not include desired outputs 

• less well-defined problem with no obvious error metrics 

• topic modeling, market segmentation, clustering of hand-written 
digits, news clustering (e.g. Google news)



Supervised Learning

• Learning a mapping from inputs xi to outputs yi given a labelled set of 
input-output pairs (N samples) 

• Data Matrix (N samples, D features) 

• Function approximation, function f is unknown and we approximate it 

• Classification 

• yi is categorical or nominal (C classes): 

• Regression 

• yi is a real-valued scalar:

D = {(xi, yi)}Ni=1

yi 2 {1, . . . , C}

yi 2 R

y = f(x)
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Supervised Learning: Classification
Recognizing types of Iris flowers (by R. Fisher)

Overview of machine learning What is machine learning?

A rich history of applying statistical learning methods

Recognizing flowers (by R. Fisher, 1936)
Types of Iris: setosa, versicolor, and virginica
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6 Chapter 1. Introduction

(a) (b) (c)

Figure 1.3 Three types of iris flowers: setosa, versicolor and virginica. Source: http://www.statlab.u
ni-heidelberg.de/data/iris/ . Used with kind permission of Dennis Kramb and SIGNA.
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Figure 1.4 Visualization of the Iris data as a pairwise scatter plot. The diagonal plots the marginal
histograms of the 4 features. The off diagonals contain scatterplots of all possible pairs of features. Red
circle = setosa, green diamond = versicolor, blue star = virginica. Figure generated by fisheririsDemo.

Classifying flowers

Figure 1.3 gives another example of classification, due to the statistician Ronald Fisher. The goal
is to learn to distinguish three different kinds of iris flower, called setosa, versicolor and virginica.
Fortunately, rather than working directly with images, a botanist has already extracted 4 useful
features or characteristics: sepal length and width, and petal length and width. (Such feature
extraction is an important, but difficult, task. Most machine learning methods use features
chosen by some human. Later we will discuss some methods that can learn good features from
the data.) If we make a scatter plot of the iris data, as in Figure 1.4, we see that it is easy to
distinguish setosas (red circles) from the other two classes by just checking if their petal length

Overview of machine learning What is machine learning?

A rich history of applying statistical learning methods

Recognizing flowers (by R. Fisher, 1936)
Types of Iris: setosa, versicolor, and virginica
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Scatter plots of all possible feature pairs

Exploratory data analysis (intuition)25



Supervised Learning: Classification
Recognizing types of Iris flowers (by R. Fisher)
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ni-heidelberg.de/data/iris/ . Used with kind permission of Dennis Kramb and SIGNA.
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Figure 1.4 Visualization of the Iris data as a pairwise scatter plot. The diagonal plots the marginal
histograms of the 4 features. The off diagonals contain scatterplots of all possible pairs of features. Red
circle = setosa, green diamond = versicolor, blue star = virginica. Figure generated by fisheririsDemo.

Classifying flowers

Figure 1.3 gives another example of classification, due to the statistician Ronald Fisher. The goal
is to learn to distinguish three different kinds of iris flower, called setosa, versicolor and virginica.
Fortunately, rather than working directly with images, a botanist has already extracted 4 useful
features or characteristics: sepal length and width, and petal length and width. (Such feature
extraction is an important, but difficult, task. Most machine learning methods use features
chosen by some human. Later we will discuss some methods that can learn good features from
the data.) If we make a scatter plot of the iris data, as in Figure 1.4, we see that it is easy to
distinguish setosas (red circles) from the other two classes by just checking if their petal length
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K-Nearest Neighbor (K-NN) classifier 
• Test sample x is assigned to the most 

common class among its neighbors [N]

number of votes 
from class c

most common 
class

y = f(x) = arg max
c=1,...,C

vc
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Brief probability review
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Probability 
• P(A): probability that event A is true 

• A: “it will rain tomorrow” 

• p(A)=0.2: “there is 20% chance of rain tomorrow”

Conditional probability 
• P(A|B): probability of event A, given that event B is true 

• A: “it will rain tomorrow” 

• B: “today is humid”, C: “today is windy” 

• p(A|B): “chance of rain tomorrow, given that today is 
humid”, e.g. p(A|B)=0.6 

• p(A|B⋀C): “chance of rain tomorrow, given that today is 

humid and windy”, e.g. p(A|B⋀C)=0.7



Supervised Learning: Classification
Recognizing types of Iris flowers (by R. Fisher)
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Figure 1.4 Visualization of the Iris data as a pairwise scatter plot. The diagonal plots the marginal
histograms of the 4 features. The off diagonals contain scatterplots of all possible pairs of features. Red
circle = setosa, green diamond = versicolor, blue star = virginica. Figure generated by fisheririsDemo.

Classifying flowers

Figure 1.3 gives another example of classification, due to the statistician Ronald Fisher. The goal
is to learn to distinguish three different kinds of iris flower, called setosa, versicolor and virginica.
Fortunately, rather than working directly with images, a botanist has already extracted 4 useful
features or characteristics: sepal length and width, and petal length and width. (Such feature
extraction is an important, but difficult, task. Most machine learning methods use features
chosen by some human. Later we will discuss some methods that can learn good features from
the data.) If we make a scatter plot of the iris data, as in Figure 1.4, we see that it is easy to
distinguish setosas (red circles) from the other two classes by just checking if their petal length
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The need of probabilistic predictions 
• The right class of testing samples is unclear 

• Return probabilities to handle ambiguity

posterior probability: 
probability of test sample 

belonging to class c given input 
vector x and training set D

most likely 
class

y = f(x) = arg max
c=1,...,C

p(y = c|x,D)

MAP estimate (maximum a posteriori)

Biomedical applications (e.g. tumor classification) 
DeepQA for IBM Watson, etc. 28
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Question: Given the training data bellow, what would be a 
reasonable probability that a classifier would assign to the 
following test samples?

Training Set D

1.2. Supervised learning 3

(a) (b)

Figure 1.1 Left: Some labeled training examples of colored shapes, along with 3 unlabeled test cases.
Right: Representing the training data as an N ×D design matrix. Row i represents the feature vector xi.
The last column is the label, yi ∈ {0, 1}. Based on a figure by Leslie Kaelbling.

1.2 Supervised learning

We begin our investigation of machine learning by discussing supervised learning, which is the
form of ML most widely used in practice.

1.2.1 Classification

In this section, we discuss classification. Here the goal is to learn a mapping from inputs x
to outputs y, where y ∈ {1 , . . . , C}, with C being the number of classes. If C = 2 , this is
called binary classification (in which case we often assume y ∈ {0 , 1}); if C > 2 , this is called
multiclass classification. If the class labels are not mutually exclusive (e.g., somebody may be
classified as tall and strong), we call it multi-label classification, but this is best viewed as
predicting multiple related binary class labels (a so-called multiple output model). When we
use the term “classification”, we will mean multiclass classification with a single output, unless
we state otherwise.
One way to formalize the problem is as function approximation. We assume y = f(x) for

some unknown function f , and the goal of learning is to estimate the function f given a labeled
training set, and then to make predictions using ŷ = f̂(x). (We use the hat symbol to denote
an estimate.) Our main goal is to make predictions on novel inputs, meaning ones that we have
not seen before (this is called generalization), since predicting the response on the training set
is easy (we can just look up the answer).

1.2.1.1 Example

As a simple toy example of classification, consider the problem illustrated in Figure 1.1(a). We
have two classes of object which correspond to labels 0 and 1. The inputs are colored shapes.
These have been described by a set of D features or attributes, which are stored in an N ×D
design matrix X, shown in Figure 1.1(b). The input features x can be discrete, continuous or a
combination of the two. In addition to the inputs, we have a vector of training labels y.
In Figure 1.1, the test cases are a blue crescent, a yellow circle and a blue arrow. None of

these have been seen before. Thus we are required to generalize beyond the training set. A
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Test Set

1.2. Supervised learning 3

(a) (b)

Figure 1.1 Left: Some labeled training examples of colored shapes, along with 3 unlabeled test cases.
Right: Representing the training data as an N ×D design matrix. Row i represents the feature vector xi.
The last column is the label, yi ∈ {0, 1}. Based on a figure by Leslie Kaelbling.

1.2 Supervised learning

We begin our investigation of machine learning by discussing supervised learning, which is the
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these have been seen before. Thus we are required to generalize beyond the training set. A

Test sample s1: 
Test sample s2:

A. P(s1∈A|D)=0.9, P(s2∈A|D)=1 

B. P(s1∈B|D)=0.9, P(s2∈B|D)=0.1 

C. P(s1∈B|D)=0.9, P(s2∈A|D)=0.5 

D. None of the above
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These have been described by a set of D features or attributes, which are stored in an N ×D
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discrete 
features
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training 
labels

• Required to generalize beyond the training set 

• The right class of the testing samples is unclear 

• To handle such ambiguous cases we can return a probability 
instead of a hard 0/1 decision

test set

training set
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Supervised Learning: Regression
Predict the price of a used car

• Input x: car attributes (e.g. brand, year, mileage, etc.) 

• Output y: price of car 

• Model parameters w 

• Deterministic linear model 

• Deterministic non-linear model (φ: non-linear function) 

• Non-linear model - Probabilistic interpretation

y = f(x|w) = wTx

y = f(x|w) = wT�(x)

y = f(x|w) = wT�(x) + ✏, ✏ ⇠ N (µ,�2)
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Unsupervised Learning

• Discovering structure (patterns, regularities, etc.) in “unlabelled” data 

• Density estimation: we want to see what generally happens and what not 

instead of                 (supervised learning) 

• Clustering 

• identifying sub-populations in the data 

• Dimensionality reduction 

• project data to a lower dimensional subspace capturing its essence 

• Matrix completion 

• data imputation to infer values of non-existing entries

p(xi|✓)
p(yi|xi;✓)

33



Unsupervised Learning: Clustering

• Step 1: Estimate the distribution over the number of clusters 

• Step 2: Estimate which cluster each point belongs to 

p(K|D)

z⇤i = arg max
k=1,...,K

p(zi = k|xi,D)10 Chapter 1. Introduction
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Figure 1.8 (a) The height and weight of some people. (b) A possible clustering using K = 2 clusters.
Figure generated by kmeansHeightWeight.

manually label the data. Labeled data is not only expensive to acquire6, but it also contains
relatively little information, certainly not enough to reliably estimate the parameters of complex
models. Geoff Hinton, who is a famous professor of ML at the University of Toronto, has said:

When we’re learning to see, nobody’s telling us what the right answers are — we just
look. Every so often, your mother says “that’s a dog”, but that’s very little information.
You’d be lucky if you got a few bits of information — even one bit per second — that
way. The brain’s visual system has 1014 neural connections. And you only live for 109

seconds. So it’s no use learning one bit per second. You need more like 105 bits per
second. And there’s only one place you can get that much information: from the input
itself. — Geoffrey Hinton, 1996 (quoted in (Gorder 2006)).

Below we describe some canonical examples of unsupervised learning.

1.3.1 Discovering clusters

As a canonical example of unsupervised learning, consider the problem of clustering data into
groups. For example, Figure 1.8(a) plots some 2d data, representing the height and weight of
a group of 210 people. It seems that there might be various clusters, or subgroups, although
it is not clear how many. Let K denote the number of clusters. Our first goal is to estimate
the distribution over the number of clusters, p(K|D); this tells us if there are subpopulations
within the data. For simplicity, we often approximate the distribution p(K|D) by its mode,
K∗ = argmaxK p(K|D). In the supervised case, we were told that there are two classes (male
and female), but in the unsupervised case, we are free to choose as many or few clusters as we
like. Picking a model of the “right” complexity is called model selection, and will be discussed
in detail below.
Our second goal is to estimate which cluster each point belongs to. Let zi ∈ {1, . . . ,K}

represent the cluster to which data point i is assigned. (zi is an example of a hidden or

6. The advent of crowd sourcing web sites such as Mechanical Turk, (https://www.mturk.com/mturk/welcome),
which outsource data processing tasks to humans all over the world, has reduced the cost of labeling data. Nevertheless,
the amount of unlabeled data is still orders of magnitude larger than the amount of labeled data.
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Unsupervised Learning: Dimensionality Reduction

• Lower dimensional representations can have better predictive power 

• minimized data redundancies 

• avoiding “curse of dimensionality” 
1.3. Unsupervised learning 11
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Figure 1.9 (a) A set of points that live on a 2d linear subspace embedded in 3d. The solid red line is the
first principal component direction. The dotted black line is the second PC direction. (b) 2D representation
of the data. Figure generated by pcaDemo3d.

latent variable, since it is never observed in the training set.) We can infer which cluster each
data point belongs to by computing z∗i = argmaxk p(zi = k|xi,D). This is illustrated in
Figure 1.8(b), where we use different colors to indicate the assignments, assuming K = 2 .

In this book, we focus on model based clustering, which means we fit a probabilistic model
to the data, rather than running some ad hoc algorithm. The advantages of the model-based
approach are that one can compare different kinds of models in an objective way (in terms of
the likelihood they assign to the data), we can combine them together into larger systems, etc.
Here are some real world applications of clustering.

• In astronomy, the autoclass system (Cheeseman et al. 1988) discovered a new type of star,
based on clustering astrophysical measurements.

• In e-commerce, it is common to cluster users into groups, based on their purchasing or
web-surfing behavior, and then to send customized targeted advertising to each group (see
e.g., (Berkhin 2006)).

• In biology, it is common to cluster flow-cytometry data into groups, to discover different
sub-populations of cells (see e.g., (Lo et al. 2009)).

1.3.2 Discovering latent factors

When dealing with high dimensional data, it is often useful to reduce the dimensionality by
projecting the data to a lower dimensional subspace which captures the “essence” of the data.
This is called dimensionality reduction. A simple example is shown in Figure 1.9, where we
project some 3d data down to a 2d plane. The 2d approximation is quite good, since most points
lie close to this subspace. Reducing to 1d would involve projecting points onto the red line in
Figure 1.9(a); this would be a rather poor approximation. (We will make this notion precise in
Chapter 12.)
The motivation behind this technique is that although the data may appear high dimensional,

there may only be a small number of degrees of variability, corresponding to latent factors. For
example, when modeling the appearance of face images, there may only be a few underlying
latent factors which describe most of the variability, such as lighting, pose, identity, etc, as
illustrated in Figure 1.10.

Principal component analysis (PCA) 
identifies a set of uncorrelated axes that maximize the variance of the data
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Unsupervised Learning: Dimensionality Reduction

MRI denoising

Example applications of PCA

Eigenfaces

36



Unsupervised Learning: Matrix completion

Image restorationRecommender systems
1.3. Unsupervised learning 15
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Figure 1.13 Example of movie-rating data. Training data is in red, test data is denoted by ?, empty cells
are unknown.

(say an integer between 1 and 5, where 1 is dislike and 5 is like) by user u of movie m. Note
that most of the entries in X will be missing or unknown, since most users will not have rated
most movies. Hence we only observe a tiny subset of the X matrix, and we want to predict
a different subset. In particular, for any given user u, we might want to predict which of the
unrated movies he/she is most likely to want to watch.
In order to encourage research in this area, the DVD rental company Netflix created a com-

petition, launched in 2006, with a $1M USD prize (see http://netflixprize.com/). In
particular, they provided a large matrix of ratings, on a scale of 1 to 5, for ∼ 18k movies
created by ∼ 500k users. The full matrix would have ∼ 9 × 109 entries, but only about 1%
of the entries are observed, so the matrix is extremely sparse. A subset of these are used for
training, and the rest for testing, as shown in Figure 1.13. The goal of the competition was to
predict more accurately than Netflix’s existing system. On 21 September 2009, the prize was
awarded to a team of researchers known as “BellKor’s Pragmatic Chaos”. Section 27.6.2 discusses
some of their methodology. Further details on the teams and their methods can be found at
http://www.netflixprize.com/community/viewtopic.php?id=1537.

1.3.4.3 Market basket analysis

In commercial data mining, there is much interest in a task called market basket analysis. The
data consists of a (typically very large but sparse) binary matrix, where each column represents
an item or product, and each row represents a transaction. We set xij = 1 if item j was
purchased on the i’th transaction. Many items are purchased together (e.g., bread and butter),
so there will be correlations amongst the bits. Given a new partially observed bit vector,
representing a subset of items that the consumer has bought, the goal is to predict which other
bits are likely to turn on, representing other items the consumer might be likely to buy. (Unlike
collaborative filtering, we often assume there is no missing data in the training data, since we
know the past shopping behavior of each customer.)
This task arises in other domains besides modeling purchasing patterns. For example, similar

techniques can be used to model dependencies between files in complex software systems. In
this case, the task is to predict, given a subset of files that have been changed, which other ones
need to be updated to ensure consistency (see e.g., (Hu et al. 2010)).
It is common to solve such tasks using frequent itemset mining, which create association

rules (see e.g., (Hastie et al. 2009, sec 14.2) for details). Alternatively, we can adopt a probabilistic
approach, and fit a joint density model p(x1, . . . , xD) to the bit vectors, see e.g., (Hu et al.

Sources: Wang & Jia, 2017; 
Papandreou, Maragos, & Kokaram, 2008
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To sum up

• Machine learning definition 

• Key components of learning: representation, evaluation, optimization 

• Types of learning systems: supervised & unsupervised 
• Challenges in machine learning 
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Outline

• About this class 

• Introduction to Machine Learning 
• What is Machine Learning? 
• Basic challenges
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Key Machine Learning Challenges 
Generalization

• Biggest ML challenge is to generalize beyond the training set 

• Never evaluate your ML system on the train data only 
• Use test data instead 

• Contamination of the ML system from the test data can occur when: 

• use test through excessive parameter tuning 

• Avoid this with (cross-)validation 

• On the positive side 🙂  

• We may not need to fully optimize it, since the objective 
function is only a proxy of the true one 
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Key Machine Learning Challenges 
Overfitting

• The risk of using highly flexible (complicated) models without having 
enough data 

• Ways to avoid overfitting 

• (cross-)validation 

• regularization20 Chapter 1. Introduction
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Figure 1.18 Polynomial of degrees 14 and 20 fit by least squares to 21 data points. Figure generated by
linregPolyVsDegree.

We often assume that ϵ has a Gaussian8 or normal distribution. We denote this by ϵ ∼
N (µ,σ2), where µ is the mean and σ2 is the variance (see Chapter 2 for details). When we plot
this distribution, we get the well-known bell curve shown in Figure 1.17(a).
To make the connection between linear regression and Gaussians more explicit, we can rewrite

the model in the following form:

p(y|x, θ) = N (y|µ(x),σ2(x)) (1.5)

This makes it clear that the model is a conditional probability density. In the simplest case, we
assume µ is a linear function of x, so µ = wTx, and that the noise is fixed, σ2(x) = σ2. In
this case, θ = (w,σ2) are the parameters of the model.
For example, suppose the input is 1 dimensional. We can represent the expected response as

follows:

µ(x) = w0 + w1x = wTx (1.6)

where w0 is the intercept or bias term, w1 is the slope, and where we have defined the vector
x = (1, x). (Prepending a constant 1 term to an input vector is a common notational trick which
allows us to combine the intercept term with the other terms in the model.) If w1 is positive,
it means we expect the output to increase as the input increases. This is illustrated in 1d in
Figure 1.17(b); a more conventional plot, of the mean response vs x, is shown in Figure 1.7(a).
Linear regression can be made to model non-linear relationships by replacing x with some

non-linear function of the inputs, φ(x). That is, we use

p(y|x, θ) = N (y|wTφ(x),σ2) (1.7)

This is known as basis function expansion. For example, Figure 1.18 illustrates the case where
φ(x) = [1, x, x2, . . . , xd], for d = 14and d = 20; this is known as polynomial regression.
We will consider other kinds of basis functions later in the book. In fact, many popular
machine learning methods — such as support vector machines, neural networks, classification
and regression trees, etc. — can be seen as just different ways of estimating basis functions
from data, as we discuss in Chapters 14 and 16.

8. Carl Friedrich Gauss (1777–1855) was a German mathematician and physicist.
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Key Machine Learning Challenges 
Curse of dimensionality

• All intuition fails in higher dimensions 

• For a fixed training set, generalization gets harder in larger dimensions 

• harder to systematically search a high-dimensional grid-space 

• harder to accurately approximate a high-dimensional function 

• On the positive side 🙂  

• “blessing of non-uniformity”: examples aren’t usually spread uniformly18 Chapter 1. Introduction
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Figure 1.16 Illustration of the curse of dimensionality. (a) We embed a small cube of side s inside a larger
unit cube. (b) We plot the edge length of a cube needed to cover a given volume of the unit cube as a
function of the number of dimensions. Based on Figure 2.6 from (Hastie et al. 2009). Figure generated by
curseDimensionality.

distance metric to use is Euclidean distance (which limits the applicability of the technique to
data which is real-valued), although other metrics can be used.
Figure 1.15 gives an example of the method in action, where the input is two dimensional, we

have three classes, and K = 10 . (We discuss the effect of K below.) Panel (a) plots the training
data. Panel (b) plots p(y = 1|x,D) where x is evaluated on a grid of points. Panel (c) plots
p(y = 2 |x,D). We do not need to plot p(y = 3 |x,D), since probabilities sum to one. Panel (d)
plots the MAP estimate ŷ(x) = argmaxc(y = c|x,D).
A KNN classifier with K = 1 induces a Voronoi tessellation of the points (see Figure 1.14(b)).

This is a partition of space which associates a region V (xi) with each point xi in such a way
that all points in V (xi) are closer to xi than to any other point. Within each cell, the predicted
label is the label of the corresponding training point.

1.4.3 The curse of dimensionality

The KNN classifier is simple and can work quite well, provided it is given a good distance metric
and has enough labeled training data. In fact, it can be shown that the KNN classifier can come
within a factor of 2 of the best possible performance if N → ∞ (Cover and Hart 1967).
However, the main problem with KNN classifiers is that they do not work well with high

dimensional inputs. The poor performance in high dimensional settings is due to the curse of
dimensionality.
To explain the curse, we give some examples from (Hastie et al. 2009, p22). Consider applying

a KNN classifier to data where the inputs are uniformly distributed in the D-dimensional unit
cube. Suppose we estimate the density of class labels around a test point x by “growing” a
hyper-cube around x until it contains a desired fraction f of the data points. The expected edge
length of this cube will be eD(f) = f1/D . If D = 10 , and we want to base our estimate on 10%
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Key Machine Learning Challenges 
Feature Engineering

Source: Baidu

• Learning is easy if you have informative 
features for the problem 

• Automating the feature engineering 
process 

• Deep learning systems producing 
output from raw input
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Key Machine Learning Challenges 
“No-free-lunch” theorem

• “All models are wrong but some models are useful”, G. Box, 1987 

• There is no single best ML system that works optimally for all 
kinds of problems 

• On the positive side 🙂  

• General assumptions can actually work pretty well, e.g. 

• Similar examples belong to similar classes 

• Independence and smoothness assumptions 

• We might need to try lots of different ML systems and learning 
algorithms to cover the wide variety of real-world data. 

• Machine learning is not magic: it can’t get something out of 
nothing, but it can get more from less! 
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To sum up
• Machine learning definition 

• Key components of learning: representation, evaluation, optimization 

• Types of learning systems: supervised & unsupervised 
• Challenges in machine learning 

Readings: 

• Alpaydin Ch1, Abu-Mostafa Ch 1 

• P. Domingos, “A few things to know about machine learning” 

Fun videos to watch: 

• https://www.youtube.com/watch?v=R9OHn5ZF4Uo  

• www.youtube.com/watch?v=ujxriwApPP4  

• https://www.youtube.com/watch?v=Q-Qq8ipUHEI 
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