
CSCE 633: Machine Learning

Lecture 10



Overview

• Motivation for dimensionality reduction

• Feature selection
• Wrappers
• Filters
• Embedded methods

• Feature transformation
• Principal Component Analysis (PCA)
• Autoencoders
• Clustering

2 / 38



Overview

• Motivation for dimensionality reduction

• Feature selection
• Wrappers
• Filters
• Embedded methods

• Feature transformation
• Principal Component Analysis (PCA)
• Autoencoders
• Clustering

3 / 38



Motivation for dimensionality reduction

Examples of large feature spaces

Predicting recurrence of lung cancer

4 / 38



Motivation for dimensionality reduction

Examples of large feature spaces

Text classification

5 / 38



What is curse of dimensionality

Number of cells grows exponentially as dimensionality increases

• Large number of cells, even if D is moderately large

• So to cover the whole space reasonably well, you need exponentially
number of training data points

6 / 38



Dimensionality Reduction

Broader question

• How can we detect low dimensional structure in high dimensional
data?

Motivations
• Exploratory data analysis & visualization: you can plot data now

• Compact representation: small memory/computational footprint,
lossy data compression

• Robust statistical modeling: curse of dimensionality

7 / 38



Dimensionality Reduction

General rules of dimensionality reduction

• Relevant features: the features that we need to perform well

• Irrelevant features: the features that are unnecessary

• Redundant features: the features that that become irrelevant in the
presence of others

8 / 38



Overview

• Motivation for dimensionality reduction

• Feature selection
• Wrappers
• Filters
• Embedded methods

• Feature transformation
• Principal Component Analysis (PCA)
• Autoencoders
• Clustering

9 / 38



Feature selection

Wrappers

• Rely on a feature search strategy to find an “optimal” subset of
features based on the performance of the classifier

• Pros
• High accuracy
• Specific to the classifier of interest

• Cons
• Computationally expensive

10 / 38



Feature selection

Wrappers - Possible feature search strategies

• Exhaustive search
• Try all possible feature combinations
• M features → 2M possible subsets

• Sequential forward selection
• Greedy incremental selection of best performing features

• Recursive backward elimination
• Starting from the full feature set, greedy selection of features

which hurt performance

• Genetic algorithms
• Random selection of features
• Update of feature selection probabilities based on performance

metrics

11 / 38



Feature selection

Wrappers: Sequential Feature Selection

• Cost is M + (M − 1) + . . .+ 1 = M(M+1)
2 , instead of 2M

12 / 38



Overview

• Motivation for dimensionality reduction

• Feature selection
• Wrappers
• Filters
• Embedded methods

• Feature transformation
• Principal Component Analysis (PCA)
• Autoencoders
• Clustering

13 / 38



Feature selection

Filters

• We only pick the most informative features for the outcome

• We do not run a machine learning model

• We rank features according to their information and choose a
cut-off point

• Pros
• Computationally cheap

• Cons
• No feature interaction is taken into account
• Machine learning model is not taken into account

14 / 38



Feature selection

Filters - Possible feature evaluation metrics

• Correlation of feature xk with target variable y

ρ(xk , y) =
Cov(xk , y)

Var(xk)Var(y)

Measures linear dependencies

• Mutual information of feature xk with target variable y

I (xk , y) =
∑
i

∑
j

P(xk = i , y = j)
P(xk = i , y = j)

P(xk = i)P(y = j)

where P is the probability estimate from the data
Assumes known probability distribution of the data.

15 / 38



Feature selection

Filters - Possible feature evaluation metrics

• Fisher’s criterion of feature d of sample xn from class k

F (d) =

∑
k

∑
xn∈Ck

(xnd − µkd)2∑
k (µd − µkd)2

where µkd is the mean of feature d from class k , and µd is the
mean of feature d from all samples
Measures within-class scatter in relation to between-class scatter

16 / 38



Feature selection

Filters

• A lot less expensive

17 / 38



Overview

• Motivation for dimensionality reduction

• Feature selection
• Wrappers
• Filters
• Embedded methods

• Feature transformation
• Principal Component Analysis (PCA)
• Autoencoders
• Clustering

18 / 38



Feature selection

Embedded methods

• The classifier performs feature selection as part of the learning
procedure

• Regularization is a great example

J(w) = EC (w) + λ

D∑
d=1

w2
d = EC (w) + λ‖w‖22

• Pros
• Feature selection is part of learning the procedure

• Cons
• Computationally demanding

19 / 38



Overview

• Motivation for dimensionality reduction

• Feature selection
• Wrappers
• Filters
• Embedded methods

• Feature transformation
• Principal Component Analysis (PCA)
• Autoencoders
• Clustering

20 / 38



Feature transformation

Linear feature transformation

• x ∈ RD → y ∈ RM , D � M

• linear transformation of original space: y = UTx, U ∈ RD×M

21 / 38



Feature transformation

Linear feature transformation: Example
Assuming an input vector x = [x1, x2] ∈ R2 and a transformation Ux,

what transformation do each of the following matrices perform?

If Ux =

[
u11 u12
u21 u22

]
, then Ux =

[
u11x1 + u12x2
u21x1 + u22x2

]
.

If Ux =
[
u11 u12

]
, then Ux =

[
u11x1 + u12x2

]
.

1 U = [1, 0; 0, 1]

2 U = [1.5, 0; 0, 1.5]

3 U = [0, 1; 1, 0]

4 U = [1, 0]

5 U = [1, 1]

6 U = [1, 1; 0, 1]

22 / 38



Feature transformation
Linear feature transformation: Example
Assuming an input vector x = [x1, x2] ∈ R2 and a transformation Ux,

what transformation do each of the following matrices perform?

If Ux =

[
u11 u12
u21 u22

]
, then Ux =

[
u11x1 + u12x2
u21x1 + u22x2

]
.

If Ux =
[
u11 u12

]
, then Ux =

[
u11x1 + u12x2

]
.

1 U = [1, 0; 0, 1] Identity

2 U = [1.5, 0; 0, 1.5] Dilation

3 U = [0, 1; 1, 0] Flipping of axes

4 U = [1, 0] Preserving only first dimension

5 U = [1, 1] Substituting the first dimension by the sum of the two.
Removing the second dimension.

6 U = [1, 1; 0, 1] Substituting the first dimension by the sum of the
two. Preserving the second dimension.

23 / 38



Principal Component Analysis (PCA): Representation

• Input: Data D = {x1, . . . , xN}, xn ∈ RD ,centered inputs

• Output: Projected data {y1, . . . , yN}, yn ∈ RM , D � M

• Projection into subspace: U ∈ RD×M

yn = UTxn , UTU = I

• Evaluation metric: many possible metrics yielding the same solution

• Derivation 1: Maximize captured variance
• Derivation 2: Minimize projection error

24 / 38



Covariance Matrix

For 2-dimensional samples xn = [xn1, xn2]T , we assume means µ1 and µ2

for dimensions 1 and 2.

Σ =

[ ∑N
n=1 (xn1 − µ1)2

∑N
n=1 (xn1 − µ1)(xn2 − µ2)∑N

n=1 (xn1 − µ1)(xn2 − µ2)
∑N

n=1 (xn2 − µ2)2

]

25 / 38



Matrix Diagonalization

• Converting a square matrix into a special type of matrix, i.e.
diagonal, which shares the same fundamental properties of the
underlying matrix

• Eigen-decomposition theorem: A square matrix A ∈ RD×D can be
decomposed into

A = PΛP−1

• Λ = diag(λ1, . . . , λD): diagonal constructed from eigenvalues
of A

• P =

 | | |
e1 . . . eD

| | |

 ∈ RM×M : matrix decomposed from the

eigenvectors of A

26 / 38



Matrix Diagonalization

• Assuming that we have a matrix equation AX = Y

• This can be written as PΛP−1X = Y

• Multiplying both sides by P−1 we get ΛP−1X = P−1Y

• The same linear transformation P−1 is being applied to X and Y,
therefore we can transform the equation into another space
X′ = P−1X and Y′ = P−1Y

• Now the new system that we have to solve it PX′ = Y′

• The most important advantage of this transformation is that it
decorrelates the matrices (i.e., “canonicalizes” the system),
therefore some computations might be easier of less expensive

27 / 38



Principal Component Analysis (PCA): Optimization

• Compute covariance matrix

S =
1

N
XTX , X =

 − x̃T1 −
...

− x̃TN −


U ∈ RD×M

• Diagonalize S , i.e. compute eigenvalues and eigenvectors

S = PΛP−1 , P =

 | |
u1 . . . uD

| |

 ∈ RD×D

• Use the eigenvectors corresponding to the M largest eigenvalues

U =

 | |
u1 . . . uM

| |

 ∈ RD×M

28 / 38



Principal Component Analysis (PCA): Algorithm

• Step 0: Mean normalize input features

• Step 1: Compute covariance matrix S = 1
N XTX = 1

N

∑
n xnxn

T

• Step 2: Diagonalize S and find eigenvector matrix P

• Step 3: Take the first M � D eigenvectors or principal components
(corresponding to the M largest eigenvalues) and form reduced
matrix U

• Step 3: Project data into reduced space: zn = UTxn

29 / 38



Principal Component Analysis (PCA): Example

30 / 38



Principal Component Analysis (PCA)

31 / 38



Principal Component Analysis (PCA)

How to determine the number of principal components M?

Plot eigenspectrum

∑M
d=1 λd∑D
d=1 λd

≥ threshold, where common choices are 95%, 99%

https://www.freecodecamp.org/news/an-overview-of-principal-component-analysis-6340e3bc4073/

32 / 38

https://www.freecodecamp.org/news/an-overview-of-principal-component-analysis-6340e3bc4073/


Overview

• Motivation for dimensionality reduction

• Feature selection
• Wrappers
• Filters
• Embedded methods

• Feature transformation
• Principal Component Analysis (PCA)
• Autoencoders
• Clustering

33 / 38



Autoencoders

• Unsupervised algorithm that tries to learn an approximation of the
identity function hW,b(x) ≈ x

• The middle layer of the autoencoder can be used as the transformed
feature set

34 / 38



Overview

• Motivation for dimensionality reduction

• Feature selection
• Wrappers
• Filters
• Embedded methods

• Feature transformation
• Principal Component Analysis (PCA)
• Autoencoders
• Clustering

35 / 38



Clustering

• Grouping of “similar” instances in the data sample

• Replacing a high dimensional data entry with a cluster label

• Deterministic clustering (e.g., K-Means) gives only one label per
input

• Soft clustering gives probability of a sample belonging to each
cluster

• More in the next lecture!

36 / 38



What have a learned so far

• Dimensionality reduction for visualization, compression, avoid curse
of dimensionality

• Feature selection to select the most informative features

• Feature transformation to transform the features into a reduced
space

• Readings: Alpaydin 6.1-6.3

37 / 38


