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Overview

® Motivation for dimensionality reduction
® Feature selection
® Wrappers
® Filters
® Embedded methods
® Feature transformation
® Principal Component Analysis (PCA)
® Autoencoders
® (Clustering
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Motivation for dimensionality reduction

Examples of large feature spaces
Predicting recurrence of lung cancer
lots of gene expression measurements phenotype

very few
patients

Only a few genes actually matter!

Need small, interpretable subset to help doctors!
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Motivation for dimensionality reduction

Examples of large feature spaces
Text classification

“Bag-of-Words™ representation:
x={0,300,1,..23000,1} one entry per word!

Easily 50,000 words! Very sparse - easy to overfit!
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What is curse of dimensionality

Number of cells grows exponentially as dimensionality increases
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r: number of divisions in each dimension

® [arge number of cells, even if D is moderately large

® So to cover the whole space reasonably well, you need exponentially
number of training data points
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Dimensionality Reduction

Broader question
® How can we detect low dimensional structure in high dimensional
data?
Motivations
® Exploratory data analysis & visualization: you can plot data now

® Compact representation: small memory/computational footprint,
lossy data compression

® Robust statistical modeling: curse of dimensionality
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Dimensionality Reduction

General rules of dimensionality reduction

® Relevant features: the features that we need to perform well
® [rrelevant features: the features that are unnecessary

® Redundant features: the features that that become irrelevant in the
presence of others
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Overview

® Feature selection
® Wrappers
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Feature selection
Wrappers
® Rely on a feature search strategy to find an “optimal” subset of
features based on the performance of the classifier
® Pros

® High accuracy
® Specific to the classifier of interest

® Cons
® Computationally expensive

—
o
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Feature selection

Exhaustive search
® Try all possible feature combinations
® M features — 2™ possible subsets
Sequential forward selection
® Greedy incremental selection of best performing features
Recursive backward elimination
® Starting from the full feature set, greedy selection of features
which hurt performance
Genetic algorithms

® Random selection of features
® Update of feature selection probabilities based on performance
metrics
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Feature selection

Wrappers: Sequential Feature Selection

 Costis M+ (M—1)+...+1= YD Hngread of 2M
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Overview

® Feature selection
[ ]

® Filters
[ ]
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Feature selection
Filters

We only pick the most informative features for the outcome

® We do not run a machine learning model
We rank features according to their information and choose a
cut-off point
® Pros
® Computationally cheap

e Cons
® No feature interaction is taken into account
® Machine learning model is not taken into account

k| J(Xk)
35 | 0.846
42 | 0811
10 | 0.810
654 | 0.611
22 | 0.443
59 | 0.388

212 | 0.09
39 0.05
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Feature selection

Filters - Possible feature evaluation metrics

® Correlation of feature xx with target variable y

COV(XIO y)

p(xk,y) = Var(xi) Var(y)

Measures linear dependencies
® Mutual information of feature x, with target variable y

where P is the probability estimate from the data
Assumes known probability distribution of the data.
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Feature selection
Filters - Possible feature evaluation metrics
® Fisher's criterion of feature d of sample x, from class k

_ 2k e (Xnd — [ikd)?
Zk (Md - Mkd)z

where pi4q is the mean of feature d from class k, and pg is the
mean of feature d from all samples
Measures within-class scatter in relation to between-class scatter

. '"_4.
Between cla ‘

Within class scatter

F(d)
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Feature selection

Filters

® A lot less expensive
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Overview

® Feature selection
[ ]
[ ]

® Embedded methods
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Feature selection

Embedded methods
® The classifier performs feature selection as part of the learning
procedure
® Regularization is a great example
D
J(w) = EC(w) + A wj = EC(w) + w3
d=1
® Pros
® Feature selection is part of learning the procedure
e Cons
® Computationally demanding
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Overview

® Feature transformation
® Principal Component Analysis (PCA)
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Feature transformation

Linear feature transformation

e xcRP 5 yeR” D> M

® linear transformation of original space: y = U”Tx, U € RPxM
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Feature transformation

Linear feature transformation: Example
Assuming an input vector x = [x1, x2] € R? and a transformation Ux,

what transformation do each of the following matrices perform?
uil u u11x1 + uppx

IfUx = [0 U2| then Ux = | 111X T e
U1 U2 Uz1X1 + U22X2

If Ux = [Ull Ulz], then Ux = [U11X1 + U12X2}.

® U=1[1,001]
® U=[15,00,15]
® U=101;1,0]

O U=][10]

O U=[L1]

® U=1[1,1,0,1]
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Feature transformation
Linear feature transformation: Example
Assuming an input vector x = [x1, x2] € R? and a transformation Ux,
what transformation do each of the following matrices perform?

u u u11X1 + Ui X
If Ux = |7 "1 then Ux = | 1171 T M2
Up1 U2 U21 X1 + U2 X

If Ux = [u11  w12], then Ux = [u11x1 + u1oxe).
@ U =[1,0;0,1] Identity
® U =[1.5,0;0,1.5] Dilation
©® U =10,1;1,0] Flipping of axes
O U = [1,0] Preserving only first dimension

@ U = [1, 1] Substituting the first dimension by the sum of the two.
Removing the second dimension.

® U =[1,1;0,1] Substituting the first dimension by the sum of the
two. Preserving the second dimension.
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Principal Component Analysis (PCA): Representation

Input: Data D = {x1,...,xn}, Xn € RP centered inputs
Output: Projected data {yi,...,yn}, Yn € RM, D> M
Projection into subspace: U € RP*M

yn=U"x,, UTU=1I

Evaluation metric: many possible metrics yielding the same solution

® Derivation 1: Maximize captured variance
® Derivation 2: Minimize projection error
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Covariance Matrix

For 2-dimensional samples x,, = [x,,l,x,,z]T, we assume means g1 and po
for dimensions 1 and 2.
N N
35— N > n=1 (X1 — M1)2 > on=1 (7\(/"1 — p1)(Xn2 — p12)
> et (1 = p1) (Xn2 — p2) > e (xn2 = p12)?

White Data

Identity Covariance
0.5
1
1.5 .
2
25
1 2
Diagonal Covariance
0.5 3
1
15
2
25 1 2
Non-diagonal Covariance

05 3
! 2
15
2 1
25 0
1 2
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Matrix Diagonalization

e Converting a square matrix into a special type of matrix, i.e.
diagonal, which shares the same fundamental properties of the
underlying matrix

® Eigen-decomposition theorem: A square matrix A € RP*P can be
decomposed into

A=PAP!
® A =diag(\1,...,Ap): diagonal constructed from eigenvalues
of A | | |
*P=|e; ... ep| € RM*M: matrix decomposed from the

eigenvectors of A
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Matrix Diagonalization

Assuming that we have a matrix equation AX =Y

This can be written as PAP71X =Y

Multiplying both sides by P~ we get AP~1X = P~1Y

The same linear transformation P! is being applied to X and Y,
therefore we can transform the equation into another space

X' =P !Xand Y =P7lY

Now the new system that we have to solve it PX' =Y’

The most important advantage of this transformation is that it

decorrelates the matrices (i.e., “canonicalizes” the system),
therefore some computations might be easier of less expensive
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Principal Component Analysis (PCA): Optimization

® Compute covariance matrix
S=1xTx, X=
=N , =

U e RPXM

® Diagonalize S, i.e. compute eigenvalues and eigenvectors

| \
S=PAP!, P=|u; ... up| e RPXP

® Use the eigenvectors corresponding to the M largest eigenvalues

U= |u ... um| €

RDXM

28/38



AM ‘ "I‘EXAS AEM

NIVERSITY

Principal Component Analysis (PCA): Algorithm

Step 0: Mean normalize input features
Step 1: Compute covariance matrix S = %XTX = % > XnXn |
Step 2: Diagonalize S and find eigenvector matrix P

Step 3: Take the first M < D eigenvectors or principal components
(corresponding to the M largest eigenvalues) and form reduced
matrix U

Step 3: Project data into reduced space: z, = UTx,
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Principal Component Analysis (PCA): Example

Ori

Feature 2

Gene 2

ginal Data & Two PCA Vectors

PCA-Projected Data
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Principal Component Analysis (PCA)

Original Images

LR

3030%))3

3

Eigenvectors

they look like blurred original images
Mean AL =34-10° Ay =2.8-10° Ay =24-10°

Ay =16-10°

3233

=,

2

Used to centralize inputs
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Principal Component Analysis (PCA)

How to determine the number of principal components M?
Plot eigenspectrum

x 10°
3
Ai
2 Really really small here...
maybe this is a good place to choose M?
1
0 ' —
0 200 400 600 )
M
A
# > threshold, where common choices are 95%, 99%
2 d-12d

https://www.freecodecamp.org/news/an-overview-of-principal-component-analysis-6340e3bc4073/
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Overview

® Feature transformation
[ ]

® Autoencoders
[ ]
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Autoencoders

® Unsupervised algorithm that tries to learn an approximation of the
identity function hw p(x) =~ x

® The middle layer of the autoencoder can be used as the transformed
feature set

LayerL, Layer Ly

Layer L
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Overview

® Feature transformation
[ ]

® (Clustering
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Clustering

Grouping of “similar” instances in the data sample

Replacing a high dimensional data entry with a cluster label
Deterministic clustering (e.g., K-Means) gives only one label per
Input

Soft clustering gives probability of a sample belonging to each
cluster

More in the next lecture!
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What have a learned so far

Dimensionality reduction for visualization, compression, avoid curse
of dimensionality

Feature selection to select the most informative features

Feature transformation to transform the features into a reduced
space
Readings: Alpaydin 6.1-6.3
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