
CSCE 633: Machine Learning

Lecture 11



Overview

• Clustering overview

• Partitional clustering
• K-means clustering
• Gaussian Mixture Models (GMM)

• Hierarchical clustering
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Clustering

(1) Understanding: Finding patterns/structure/sub-populations in data

(2) Summarization: Reducing the size of large datasets
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Clustering

• find patterns/structure/sub-populations in data (“knowledge
discovery”)

• training data does not include desired outputs

• less well-defined problem with no obvious error metrics

• topic modeling, market segmentation, clustering of hand-written
digits, news clustering (e.g. Google news)
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Clustering

Finding groups of objects such that the objects in a group will be similar

(or related) to one another and different from (or unrelated to) the

objects in other groups

5 / 52



Clustering

Notion of clustering can be ambiguous
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Types of clustering

• Partitional clustering
• non-hierarchical clusters

• Hierarchical clustering
• a set of nested clusters organized as a hierarchical tree
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Types of clustering

Partitional clustering

8 / 52



Types of clustering

Hierarchical clustering
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Overview

• Clustering overview

• Partitional clustering
• K-means clustering
• Gaussian Mixture Models (GMM)

• Hierarchical clustering
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K-means ClusteringRepresentation

• Input: Data D = {x1, . . . , xN}
• Output: Clusters µ1, . . . ,µK

• Decision: Cluster membership, the cluster id assigned to sample xn,
i.e. A(xn) ∈ {1, . . . ,K}

• Evaluation metric: Distortion measure

J =
N∑

n=1

K∑
k=1

rnk‖xn − µk‖22, where rnk = 1 if A(xn) = k, 0 otherwise

• Intuition: Data points assigned to cluster k should be close to
centroid µk
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K-means Clustering

Evaluation metric: min
rnk

J = min
rnk

N∑
n=1

K∑
k=1

rnk‖xn − µk‖22

Optimization:

• Step 0: Initialize µk to some values

• Step 1: Assume the current value of µk fixed, minimize J over rnk ,
which leads to the following cluster assignment rule

rnk =

{
1, if k = arg minj ‖xn − µj‖22
0, otherwise

• Step 2: Assume the current value of rnk fixed, minimize J over µk ,
which leads to the following rule to update the prototypes of the

clusters µk =
∑

n rnkxn∑
n rnk

• Step 3: Determine whether to stop or return to Step 1
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K-means Clustering

Example
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K-means Clustering

Remarks

• The centroid µk is the means of data points assigned to the cluster
k, hence the name K-means clustering.

• The procedure terminates after a finite number of steps, as the
procedure reduces J in both Step 1 and Step 2

• There is no guarantee the procedure terminates at the global
optimum of J. In most cases, the algorithm stops at a local
optimum, which depends on the initial values in Step 0 → random
restarts to improve chances of getting closer to global optima
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K-means Clustering

Initialization of K-Means is important
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K-means Clustering

Solutions to Initial Centroids Problem

• Multiple random initializations

• Start with hierarchical clustering to determine initial centroids

• Select more than K initial centroids and then select among these
initial centroids
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K-means Clustering

How to know when to stop - Elbow Method

• Plot the error (i.e., distance of each sample to the corresponding
centroid) against the number of clusters

• Stop when the decrease in error becomes almost flat
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K-means Clustering

Application: vector quantization

• We can replace our data points with the centroids µk from the
clusters they are assigned to → vector quantization

• We have compressed the data points into
• a codebook of all the centroids {µ1, . . . ,µK}
• a list of indices to the codebook for the data points (created

based on rnk)

• This compression is obviously lossy as certain information will be
lost if we use a very small K
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K-means Clustering

Question: vector quantization with K-means
Assume that the images bellow are created by vectoring the original
image with K-means using different values of K . What is the correct
combination?

Original Image A)K = 25 K = 10 K = 3

B)K = 3 K = 10 K = 25

Correct answer is A of course :)
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K-means Clustering

Limitations of K-Means

• Problems when clusters are of differing size, density, or
non-spherical shapes (for Euclidean distances)

• Sensitive to outliers

• Number of clusters is difficult to determine
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Overview

• Clustering overview

• Partitional clustering
• K-means clustering
• Gaussian Mixture Models (GMM)

• Hierarchical clustering
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Multivariate Gaussian distribution

Univariate Gaussian distribution

p(x ;µ, σ2) =
1√
2πσ

exp

(
− 1

2σ2
(x − µ)2

)
Multivariate Gaussian distribution

p(x;µ,Σ) =
1

(2π)n/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
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Multivariate Gaussian distribution

Covariance matrix

• Covariance between two random variables X and Y
Cov(X ,Y ) = E((X − E(X ))(Y − E(Y ))) = E(XY )− E(X )E(Y )

• The covariance matrix provides a way to summarize the covariances
of all pairs of variables (Σ)ij = Cov(Xi ,Xj)

• Σ is always positive definite
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Multivariate Gaussian distribution

Isocontours

• For a function f : R2 → R an isocontour is a set of the form
{x ∈ R2 : f (x) = c}
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Multivariate Gaussian distribution

The diagonal covariance case

x =

[
x1
x2

]
µ =

[
µ1

µ2

]
Σ =

[
σ2
1 0

0 σ2
2

]

Σ =

[
1 0
0 1

]
Σ =

[
0.6 0
0 1

]
Σ =

[
2 0
0 1

]
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Multivariate Gaussian distribution
Question: Which is correct in this non-diagonal covariance case?

A) Σ =

[
1 −0.5
−0.5 1

]
Σ =

[
1 −0.8
−0.8 1

]
Σ =

[
1 0.5
0.5 1

]

B) Σ =

[
1 0.8
0.8 1

]
Σ =

[
1 0.5
0.5 1

]
Σ =

[
1 −0.8
−0.8 1

]

C) Σ =

[
1 0.5
0.5 1

]
Σ =

[
1 0.8
0.8 1

]
Σ =

[
1 −0.5
−0.5 1

]
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Multivariate Gaussian distribution

Question: Which is correct in this non-diagonal covariance case?

Correct answer is C

By increasing the off-diagonal elements from 0.5 to 0.8, the distribution

is more thinly peaked along the line where x1 is equal to x2

C) Σ =

[
1 0.5
0.5 1

]
Σ =

[
1 0.8
0.8 1

]
Σ =

[
1 −0.5
−0.5 1

]
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Probabilistic interpretation of clustering

• We want to find p(x) that best describes our data

• The data points seem to form 3 clusters

• However, we cannot model p(x) with simple and known
distributions, e.g. one Gaussian
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Probabilistic interpretation of clustering

• Instead, we will model each region with a Gaussian distribution →
Gaussian mixture models (GMMs)

• Question 1: How do we know which (color) region a data point
comes from?

• Question 2: What are the parameters of Gaussian distributions in
each region?

• We will answer both in an unsupervised way from data
D = {x1, . . . , xn}
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GMM as the marginal distribution of a joint distribution

• The joint distribution between x and z (representing color) are

p(x|z = red) = N (x;µ1,Σ1)

p(x|z = blue) = N (x;µ2,Σ2)

p(x|z = green) = N (x;µ3,Σ3)

• The marginal distribution is thus

p(x) =p(red)N (x;µ1,Σ1) + p(blue)N (x;µ2,Σ2)

+ p(green)N (x;µ3,Σ3)
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Gaussian mixture models

A Gaussian mixture model has the following density function for x

p(x) =
K∑

k=1

πkN (x|µk ,Σk)

• K : number of Gaussians

• µk ,Σk : mean & covariance of k th component

• πk : component weights

πk > 0 , ∀k and
K∑

k=1

πk = 1

• Estimate µk , Σk , πk ⇒ Expectation Maximization

31 / 52



Parameter estimation for GMMs

If we know the probability of sample xn belonging to Gaussian
component k , i.e., responsibility γ(znk), we can estimate the parameters
of each Gaussian distribution {µk ,Σk , πk} (Maximization Step)

πk =

∑
n γ(znk)∑

k

∑
n γ(znk)

µk =
1∑

n γ(znk)

∑
n

γ(znk)xn

Σk =
1∑

n γ(znk)

∑
n

γ(znk)(xn − µk)(xn − µk)T

• For πk : count the number of data points whose zn is k and divide
by the total number of data points

• For µk : the mean of all samples weighted by their responsibility
(i.e., probability of belonging to mixture k)

• For Σk : the covariance matrix of all samples weighted by their
responsibility (i.e., probability of belonging to mixture k)

32 / 52



Parameter estimation for GMMs: incomplete data

If we know the parameters of each Gaussian mixture {µk ,Σk , πk}, we
can find the probability of each data sample xn belonging to Gaussian
mixture k (Expectation Step)

γ(znk) =
πkN (xn|µk ,Σk)∑K
j=1 πjN (xn|µj ,Σj )

Every data point xn is assigned to a component fractionally according to

γ(znk), also called responsibility
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Parameter estimation for GMMs

Since we do not know µk , Σk to begin with, we cannot compute γ(znk)

or πk
But we can invoke an iterative procedure and alternate between

estimating γnk using πk , µk and Σk , and vice-versa.

• Step 0: Guess πk , µk , Σk with initial values

• Step 1 (E-Step): Compute γnk using current πk , µk , Σk

• Step 2 (M-Step): Update πk , µk , Σk using computed γnk
• Step 3: Go back to Step 1
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Parameter estimation for GMMs

Example of GMM parameter estimation with EM
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Gaussian Mixture Models

Example of GMM parameter estimation with EM
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Gaussian Mixture Models

Comparison between K-Means and GMMs
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Overview

• Clustering overview

• Partitional clustering
• K-means clustering
• Gaussian Mixture Models (GMM)

• Hierarchical clustering
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Hierarchical clustering

• Produces a set of nested clusters organized as a hierarchical tree

• Visualized as a dendrogram
• A tree like diagram that records the sequences of merges or

splits
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Hierarchical clustering

Advantages of hierarchical clustering
• Do not have to pre-determine number of clusters

• Any desired number of clusters can be obtained by ‘cutting’
the dendogram at the proper level

• Resulting clusters may correspond to meaningful taxonomies
• Example in biological sciences (e.g., animal kingdom,

phylogeny reconstruction)
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Hierarchical clustering

Types of hierarchical clustering
• Agglomerative

• Start with each sample as individual cluster
• Merge the closest pair of clusters each time until only one

cluster left

• Divisive
• Start with one, all-inclusive cluster
• Split a cluster each time until each cluster contains a point
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Agglomerative hierarchical clustering

• Step 0: Compute the proximity matrix

• Step 1: Let each data sample be a cluster

• Step 2: Repeat:
• Merge the two closest clusters
• Update the proximity matrix

Until only a single cluster remains

Key operation is the computation of the proximity of two clusters →
different approaches for defining distance between clusters
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Agglomerative hierarchical clustering

Initialization: Start with each sample being a cluster
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Agglomerative hierarchical clustering

After some steps: we have some clusters
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Agglomerative hierarchical clustering

We want to merge the two closest clusters (C2 and C5) and update the
proximity matrix
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Agglomerative hierarchical clustering

How do we update the proximity matrix?
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Agglomerative hierarchical clustering

How to define inter-cluster similarity?

• min, max, group average, distance between centroids
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Agglomerative hierarchical clustering

Distance between the closest samples (min)

48 / 52



Agglomerative hierarchical clustering

Distance between the furthest samples (max)

49 / 52



Agglomerative hierarchical clustering

Average pairwise distance between samples (group average)
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Agglomerative hierarchical clustering

Distance between centroids
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Overview

• Clustering tries to find patterns/hidden structures in data

• Partitional clustering
• K-means: hard assignment of samples to one centroid
• GMMs: soft assignment of samples to each Gaussian

• Hierarchical clustering: nested clusters organized as a hierarchical
tree

• Readings: Alpaydin 7; Pang-Ning Tan 7 (uploaded on Piazza)
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