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Overview

® (Clustering overview
® Partitional clustering

® K-means clustering
® Gaussian Mixture Models (GMM)

® Hierarchical clustering
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Clustering

(1) Understanding: Finding patterns/structure/sub-populations in data
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(2) Summarization: Reducing the size of large datasets
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Clustering

find patterns/structure/sub-populations in data (“knowledge
discovery")

training data does not include desired outputs
less well-defined problem with no obvious error metrics

topic modeling, market segmentation, clustering of hand-written
digits, news clustering (e.g. Google news)
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Clustering
Finding groups of objects such that the objects in a group will be similar
(or related) to one another and different from (or unrelated to) the
objects in other groups

Inter-cluster
distances are
maximized

Intra-cluster
distances are
minimized
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Notion of clustering can be ambiguous

How many clusters?

Two Clusters

Clustering

Six Clusters
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Four Clusters
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Types of clustering

® Partitional clustering
® non-hierarchical clusters
® Hierarchical clustering
® a set of nested clusters organized as a hierarchical tree
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Types of clustering

Partitional clustering
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Original Points A Partitional Clustering
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Types of clustering

Hierarchical clustering

p4

pl p2 p3p4

Traditional Hierarchical Clustering Traditional Dendrogram
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Overview

® Partitional clustering

® K-means clustering
[ ]
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Representation K-means Clustering

Input: Data D = {x1,...,xn}

Output: Clusters p1, ..., uk

Decision: Cluster membership, the cluster id assigned to sample x,,

ie. A(xa) €{1,...,K}

Evaluﬁcio}rg metric: Distortion measure

J=20 37 rokllxn — pl
n=1k=1

Intuition: Data points assigned to cluster k should be close to

centroid puk

2, where r,, = 1 if A(xa) = k, 0 otherwise
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K-means Clustering

N K

Evaluation metric: minJ =min > > rokl[xn — HkH%
Ik nk p=1 k=1

Optimization:

® Step 0: Initialize pk to some values

® Step 1: Assume the current value of pg fixed, minimize J over rp,
which leads to the following cluster assignment rule
= { 1, ifk= arg min; [|xn — /3
0, otherwise
® Step 2: Assume the current value of r,, fixed, minimize J over pu,

which leads to the following rule to update the prototypes of the

FokXn
clusters g = % -

® Step 3. Determine whether to stop or return to Step 1
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K-means Clustering

Example
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K-means Clustering

® The centroid pk is the means of data points assigned to the cluster
k, hence the name K-means clustering.

® The procedure terminates after a finite number of steps, as the
procedure reduces J in both Step 1 and Step 2

® There is no guarantee the procedure terminates at the global
optimum of J. In most cases, the algorithm stops at a local
optimum, which depends on the initial values in Step 0 — random
restarts to improve chances of getting closer to global optima
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K-means Clustering

Initialization of K-Means is important
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Optimal Clustering Sub-optimal Clustering
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K-means Clustering

Solutions to Initial Centroids Problem
® Multiple random initializations
® Start with hierarchical clustering to determine initial centroids

® Select more than K initial centroids and then select among these
initial centroids
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K-means Clustering
How to know when to stop - Elbow Method
® Plot the error (i.e., distance of each sample to the corresponding
centroid) against the number of clusters
® Stop when the decrease in error becomes almost flat

Error Rate vs. K Value
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K-means Clustering

Application: vector quantization

® We can replace our data points with the centroids px from the
clusters they are assigned to — vector quantization
® \We have compressed the data points into

® a codebook of all the centroids {1, ..., K}
® a list of indices to the codebook for the data points (created
based on k)

® This compression is obviously lossy as certain information will be
lost if we use a very small K
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K-means Clustering

Question: vector quantization with K-means

Assume that the images bellow are created by vectoring the original
image with K-means using different values of K. What is the correct
combination?

Original Image A)K =25
/ /i

Correct answer is A of course :)
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K-means Clustering

® Problems when clusters are of differing size, density, or
non-spherical shapes (for Euclidean distances)

® Sensitive to outliers
® Number of clusters is difficult to determine
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Overview

® Partitional clustering
[ ]

® Gaussian Mixture Models (GMM)
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Univariate Gaussian distribution

p(x; p, X) = W

Multivariate Gaussian distribution

5 1
p(x; p,0°) = ﬁexp -

Multivariate Gaussian distribution

e (507 - )
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Multivariate Gaussian distribution

Covariance matrix
® Covariance between two random variables X and Y
Cov(X,Y) = E((X — E(X))(Y — E(Y))) = E(XY) — E(X)E(Y)
® The covariance matrix provides a way to summarize the covariances
of all pairs of variables (X'); = Cov(Xi, X;)

e 3 is always positive definite
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Multivariate Gaussian distribution

Isocontours

® For a function f : R2 — R an isocontour is a set of the form
{x € R2: f(x)=c}
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Multivariate Gaussian distribution

The diagonal covariance case
2
X1 M1 01 0
X = = 2 =
{Xz]“ [uz] {0 ff%}

X2 X2 X2
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Multivariate Gaussian distribution
Question: Which is correct in this non-diagonal covariance case?

X2 X2 X2

= T2 TA
(((O))) [/ ) L))
v & [
A)EZ[ 0.5 1_0'5] 2:[1_08 1_0'8] 2:[35 (1)'5}
X2 B X2 X2
N =\ —
= \Q:/// s\:é ‘
B)EZ[(I)AS (1)8] 2:[(1).5 (1)5} 21[170‘8 1_08}
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C)Ez{fl).s (1)‘5] E:[(l).s (1)'8] 2:[170.5 170'5]
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Multivariate Gaussian distribution

Question: Which is correct in this non-diagonal covariance case?

Correct answer is C

By increasing the off-diagonal elements from 0.5 to 0.8, the distribution

is more thinly peaked along the line where xj is equal to x;

X2 X2 X2
X\ S
////j\\‘ //’/// \‘\H f\\//r \\\
@ & =7
X1 X1 X1
C)E:{é.s (1)‘5] E:[(l).s ?'8] 22[1—045 1_0'5]
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Probabilistic interpretation of clustering

® \We want to find p(x) that best describes our data
® The data points seem to form 3 clusters

® However, we cannot model p(x) with simple and known
distributions, e.g. one Gaussian

28 /52



AM ‘ "I‘EXAS AEM

NIVERSITY

Probabilistic interpretation of clustering

Instead, we will model each region with a Gaussian distribution —
Gaussian mixture models (GMMs)

Question 1: How do we know which (color) region a data point
comes from?

Question 2: What are the parameters of Gaussian distributions in
each region?

We will answer both in an unsupervised way from data

D= {Xl,...,Xn}
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GMM as the marginal distribution of a joint distribution

® The joint distribution between x and z (representing color) are
p(x|z = red) = N(x; p1, 1)

p(x|z = blue) = N(x; 2, )
p(x|z = green) = N (x; p3. 23)

® The marginal distribution is thus

p(x) =p(red)N (x; p1, X1) + p(blue) N (x; p2, X2)
+ p(green) N (x; p3, X3)

(a)
I,
. v TR
R

0 0.5 1 0 05 1

0.5
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Gaussian mixture models

A Gaussian mixture model has the following density function for x
K
p(x) = Zﬂf\/(x\#k, k)
k=1

® K: number of Gaussians

fti, Xk: mean & covariance of k™" component

® 7,: component weights
K
m >0, Vk and Y m =1
k=1

® Estimate pg, Xk, Tk = Expectation Maximization
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Parameter estimation for GMMs

If we know the probability of sample x, belonging to Gaussian
component k, i.e., responsibility v(z,x), we can estimate the parameters
of each Gaussian distribution {ztx, X%, 74} (Maximization Step)

D Y 7C:7) N SR ~ S
e >k 20 V(Znk) k= S (zo) 2’;7( nk ) Xn

Y= z:nj(znk) Z):’Y(an)(xn — poi) (X0 — Hk)T

® For m: count the number of data points whose z, is k and divide
by the total number of data points

® For ug: the mean of all samples weighted by their responsibility
(i.e., probability of belonging to mixture k)

® For X: the covariance matrix of all samples weighted by their
responsibility (i.e., probability of belonging to mixture k)
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Parameter estimation for GMMs: incomplete data

If we know the parameters of each Gaussian mixture { gk, X, 7k}, we
can find the probability of each data sample x,, belonging to Gaussian
mixture k (Expectation Step)

TN (Xn| ks Zk)
K
Zj:l TN (xa|pj, Xij)

Every data point x, is assigned to a component fractionally according to

V(znk) =

¥(znk), also called responsibility
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Parameter estimation for GMMs

Since we do not know gk, Xk to begin with, we cannot compute (z,x)
or Ty
But we can invoke an iterative procedure and alternate between
estimating ynx using g, pk and Xy, and vice-versa.

® Step 0: Guess mg, pk, X with initial values

® Step 1 (E-Step): Compute .k using current mg, fk, Xk

® Step 2 (M-Step): Update 7g, pk, Xk using computed vk

® Step 3: Go back to Step 1
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Parameter estimation for GMMs

Example of GMM parameter estimation with EM
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Gaussian Mixture Models

Example of GMM parameter estimation with EM
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Gaussian Mixture Models

Comparison between K-Means and GMMs

from K-means... 3 ... To GMM .
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Overview

® Hierarchical clustering
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Hierarchical clustering

® Produces a set of nested clusters organized as a hierarchical tree
® Visualized as a dendrogram
® A tree like diagram that records the sequences of merges or

splits
L]
pl
p4,
pl p2 p3p4
Traditional Hierarchical Clustering Traditional Dendrogram
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Hierarchical clustering

Advantages of hierarchical clustering
® Do not have to pre-determine number of clusters

® Any desired number of clusters can be obtained by ‘cutting’
the dendogram at the proper level

® Resulting clusters may correspond to meaningful taxonomies

® Example in biological sciences (e.g., animal kingdom,
phylogeny reconstruction)
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Hierarchical clustering

Types of hierarchical clustering
® Agglomerative

® Start with each sample as individual cluster
® Merge the closest pair of clusters each time until only one
cluster left

® Divisive
® Start with one, all-inclusive cluster
® Split a cluster each time until each cluster contains a point
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Agglomerative hierarchical clustering

® Step 0: Compute the proximity matrix
® Step 1: Let each data sample be a cluster
® Step 2: Repeat:

® Merge the two closest clusters

® Update the proximity matrix

Until only a single cluster remains

Key operation is the computation of the proximity of two clusters —
different approaches for defining distance between clusters
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Agglomerative hierarchical clustering
Initialization: Start with each sample being a cluster

O 0 o
O O
O
O
O
OO ©

p1 | p2 | p3 | p4|p5

p1

p2
p3

p4

p5

Proximity Matrix

p2 p3 p4 P9 p10  pi1 pi2

43/52



Agglomerative hierarchical clustering

After some steps: we have some clusters

C1|C2| C3 | C4|C5

Proximity Matrix

® o oo -
|

®® 15

p1 p2 p3 p4
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Agglomerative hierarchical clustering

We want to merge the two closest clusters (C2 and C5) and update the
proximity matrix
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Agglomerative hierarchical clustering

How do we update the proximity matrix?

c2
U
c1]cs|lc3|ca
c1 2
cauecs| T | T 7| ?
c3 ?
c4 ?

Proximity Matrix

e o
|
|

[l

p1 p2 p3 p4

4

L
|
|
|
|

|

|
. l m
p10 p11 p12

P9
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Agglomerative hierarchical clustering

How to define inter-cluster similarity?

p1 | p2 p3 p4 [p5

Similarity?

® min, max, group average, distance between centroids
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Agglomerative hierarchical clustering

Distance between the closest samples (min)

p1

p2

p3

p4

p1

p2

p3

p4

p5
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Agglomerative hierarchical clustering

Distance between the furthest samples (max)

How to Define Inter-Cluster Similarity

p1

p2

p3

p4

p5

p1

p2

p3

p4

p5
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Agglomerative hierarchical clustering

Average pairwise distance between samples (group average)

p1

p2

p3

p4

p5

p1

p2

p3

p4

p5
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Agglomerative hierarchical clustering

Distance between centroids

p1

p2

p3

p4

p5

51/52



AM ‘ "I‘EXAS AEM

NIVERSITY

Overview

Clustering tries to find patterns/hidden structures in data
Partitional clustering

® K-means: hard assignment of samples to one centroid
® GMMs: soft assignment of samples to each Gaussian

Hierarchical clustering: nested clusters organized as a hierarchical
tree

Readings: Alpaydin 7; Pang-Ning Tan 7 (uploaded on Piazza)
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