
CSCE 633: Machine Learning

Lecture 2



Outline

• K-Nearest Neighbor (K-NN)
• Basics
• Example & Representation

• Practical use of K-NN
• How to choose the right K and distance metric?
• How to pre-process the data?
• What to do in the case of a tie?

• Variations
• Condensed Nearest Neighbor
• Weighted Distance K-NN

Note: Part of these slides is from CSCI567 Machine Learning (USC, Drs. Sha & Liu)
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COVID-19 Guidelines

Hospitalized or fatal COVID-19 vaccine breakthrough cases reported to

CDC as of August 30, 2021

Source: https://www.cdc.gov/vaccines/covid-19/health-departments/breakthrough-cases.html
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COVID-19 Research & Updates
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K-Nearest Neighbor: Example

Recognizing types of Iris flowers (by R. Fisher)

setosa versicolor virginica

Features: the widths and lengths of sepal and petal
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K-Nearest Neighbor: Example

Visualizing features to get better intuition about our data

Each colored datapoint is one sample

setosa, versicolor, virginica
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K-Nearest Neighbor: Example

Using two features: sepal length & petal width

setosa, versicolor, virginica

Test sample is closer to red cluster → label it as setosa
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K-Nearest Neighbor: Example

Recognizing types of Iris flowers (by R. Fisher)

Often data is organized in a table

Each row is one sample with 4 features and 1 label

[Source: https://archive.ics.uci.edu/ml/datasets/iris]
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K-Nearest Neighbor: Representation

Training Data

• N samples/datapoints/instances: Dtrain = {(x1, y1), . . . , (xN, yN)}
• Used for learning representation f : x→ y

Testing Data

• M samples/datapoints/instances: Dtest = {(x1, y1), . . . , (xM, yM)}
• Used to assess how well f (·) will do in predicting an unseen sample

Train and test data should not overlap: Dtrain ∩ Dtest = ∅
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K-Nearest Neighbor: Representation

Classify data into one out of multiple classes

• Input: x ∈ RD (features, attributes, etc.)

• Output: y ∈ {1, 2, . . . ,C} (labels)

• Model: f : x→ y

Special case: binary classification (C=2)

• Output: y ∈ {1, 2} or {0, 1} or {−1, 1}, etc.
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K-Nearest Neighbor: Representation

1-Nearest Neighbor (1-NN)

• Assigns test sample x to the closest training sample

• Model

y = f (x) = ynn(x)

nn(x) = arg min
n=1,...,N

‖x− xn‖22 = arg min
n=1,...,N

D∑
d=1

(xd − xnd)2

‖ · ‖2 : l2− norm
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K-Nearest Neighbor: Representation

Nearest Neighbor (or 1-Nearest Neighbor, 1-NN): Example

The nearest point to test sample x is a red training instance, therefore x

will be labeled as red.
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K-Nearest Neighbor: Representation

Nearest Neighbor (or 1-Nearest Neighbor, 1-NN): Example

Decision boundary: For every point in the space, we can determine its

label using the nearest neighbor rule. This gives us a decision boundary

that partitions the space into different regions.

First learning algorithm: Nearest neighbor classifier Algorithm

Decision boundary

For every point in the space, we can determine its label using the NNC
rule. This gives rise to a decision boundary that partitions the space into
di↵erent regions.

x1

x2

(b)
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The above decision boundary is very sensitive to noise

What would be the solution for this?
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K-Nearest Neighbor: Representation

Increase number of nearest neighbors to use

• 1-nearest neighbor: nn1(x) = arg minn∈{1,...,N} ‖x− xn‖22
• 2-nearest neighbor: nn2(x) = arg minn∈{1,...,N}\nn1(x) ‖x− xn‖22
• 3-nearest neighbor:

nn3(x) = arg minn∈{1,...,N}\{nn1(x),nn2(x)} ‖x− xn‖22
The set of K-nearest neighbors is

knn(x) = {nn1(x), . . . , nnK (x)}

Neighbors nn1, . . . , nnK in order of increasing distance from sample x
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K-Nearest Neighbor: Representation

K-NN Model

• Each neighbor in knn(x) = {nn1(x), . . . , nnK (x)} votes one class

• Count the number of neighbors that have voted each class

vc =
∑

k∈knn(x)

I(yk = c), c = 1, . . . ,C

I: indicator function (I{A} = 1, if A true; I{A} = 0, if A false)

• Assign test sample x to to the majority class membership of the K
neighbors

y = f (x) = arg max
c=1,...,C

vc
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K-Nearest Neighbor: Representation

K-NN Example

K=1, label=red K=3 label=red K=5, label=blue
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K-Nearest Neighbor: Representation

K-NN Decision Boundary

126 2. PROBABILITY DISTRIBUTIONS

Figure 2.27 (a) In the K-nearest-
neighbour classifier, a new point,
shown by the black diamond, is clas-
sified according to the majority class
membership of the K closest train-
ing data points, in this case K =
3. (b) In the nearest-neighbour
(K = 1) approach to classification,
the resulting decision boundary is
composed of hyperplanes that form
perpendicular bisectors of pairs of
points from different classes.

x1

x2

(a)
x1

x2

(b)

If we wish to minimize the probability of misclassification, this is done by assigning
the test point x to the class having the largest posterior probability, corresponding to
the largest value of Kk/K. Thus to classify a new point, we identify the K nearest
points from the training data set and then assign the new point to the class having the
largest number of representatives amongst this set. Ties can be broken at random.
The particular case of K = 1 is called the nearest-neighbour rule, because a test
point is simply assigned to the same class as the nearest point from the training set.
These concepts are illustrated in Figure 2.27.

In Figure 2.28, we show the results of applying the K-nearest-neighbour algo-
rithm to the oil flow data, introduced in Chapter 1, for various values of K. As
expected, we see that K controls the degree of smoothing, so that small K produces
many small regions of each class, whereas large K leads to fewer larger regions.

x6

x7

K = 1

0 1 2
0

1

2

x6

x7

K = 3

0 1 2
0

1

2

x6

x7

K = 31

0 1 2
0

1

2

Figure 2.28 Plot of 200 data points from the oil data set showing values of x6 plotted against x7, where the
red, green, and blue points correspond to the ‘laminar’, ‘annular’, and ‘homogeneous’ classes, respectively. Also
shown are the classifications of the input space given by the K-nearest-neighbour algorithm for various values
of K.

Number of neighbors K controls the degree of smoothing

K ↓ : many small regions of each class

K ↑ : fewer larger regions of each class
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K-Nearest Neighbor: Computational Cost

Question: What is the computational cost of K-NN for labelling one test

sample x ∈ RD given that we have N training data?

A) O(ND)

B) O(KD)

C) O(ND + NK )

D) O(NKD)
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K-Nearest Neighbor: Computational Cost

Question: What is the computational cost of K-NN for labelling one test

sample x ∈ RD given that we have N training data?

A) O(ND)

B) O(KD)

C) O(ND + NK )

D) O(NKD)

The correct answer is C.

The cost of measuring the distance between the test sample and each

sample in the training data is O(D)

The cost of computing distances for all N train samples is O(ND)

The cost of finding the K closest samples is O(NK ) (can be optimized)

So the total cost is O(ND + NK )

[Nice video source: https://www.youtube.com/watch?v=UPAnUE_g5SQ]

20 / 45

https://www.youtube.com/watch?v=UPAnUE_g5SQ


Parametric v.s. non-parametric models

• Many possible ways to categorize learning models

• Non-parametric models (or instance/memory-based)
• more flexible
• computationally intractable for large datasets
• e.g. K-NN

• Parametric models
• faster to use
• make strong assumptions about data
• e.g. linear regression
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Curse of dimensionality

• In a high-dimensional space:
• all intuition fails in higher dimensions
• harder to generalize
• harder to systematically search
• harder to accurately approximate a target function

• K-NN is prone to high dimensions
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K-Nearest Neighbor: Theoretical guarantees

Modeling expected mistakes

• Assume data (x, y) is drawn from the joint distribution p(x, y)
• In practice, p(x, y) is unknown

• Assume we use classifier f (·) (2 classes for simplicity)

• Classification mistake on x with ground truth y , or “0/1 loss

function” L(f (x), y) =

{
0, f (x) = y
1, f (x) 6= y

• Expected classification mistake on x, or “expected conditional risk”
R(f , x) = Ey∼p(y |x)L(f (x), y)

= P(y = 1|x)I(f (x) = 0) + P(y = 0|x)I(f (x) = 1)
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K-Nearest Neighbor: Theoretical guarantees

Bayes Optimal Classifier (2 class)

• For any labeling function f (·), we have R(f ∗, x) ≤ R(f , x)

• Namely, f ∗(·) is optimal, i.e. the Bayes optimal classifier always
yields the lowest expected conditional risk

• In practice
• The Bayes optimal classifier is generally not computable as it

assumes the knowledge of p(x, y) and p(y |x)
• However, it is useful as a conceptual tool to formalize how well

a classifier can do without knowing the joint distribution
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K-Nearest Neighbor: Theoretical guarantees

How well does K-NN do wrt Bayes Optimal Classifier? (2-class)

Theorem
For the K-NN labeling function f K−NN for binary classification,
we have:
R(f ∗) ≤ R(f K−NN) ≤ 2R(f ∗)(1− R(f ∗)) ≤ 2R(f ∗)

Given infinite data, K-NN is guaranteed to approach the Bayes error rate

under ideal conditions.

In short K-NN seems to do a reasonable thing.
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K-Nearest Neighbor: Advantages & Disadvantages

Advantages Disadvantages

1. Intuitive 1. Computationally expensive for large datasets
2. Simple & easy to implement 2. We need to keep the training data in memory
3. Guarantees that it “works” 3. Choosing the right K can be tricky

4. Sensitive to noisy features
5. May perform badly in high dimensions
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K-Nearest Neighbor: Practical Use

Two practical issues about K-NN

• Choosing number of neighbors K

• Choosing distance metric between test sample x and training data
xn, n = 1, . . . ,N

‖x− xn‖p =

(
D∑

d=1

|xd − xnd |p
)1/p

, p ≥ 1

The above are called hyperparameters. They are not estimated through

the learning process, but are externally set before the beginning of the

learning process.
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K-Nearest Neighbor: Model parameters and Hyperparameters

• Hyperparameters: Parameters set before the beginning of the
learning process
• For K-NN: number of neighbors K , distance metric

• Hyperparameter tuning: The process of choosing a set of optimal
hyperparameters for the learning process

• Model parameters: The parameters learned during the learning
process
• For K-NN: As we said, KNN is non-parametric. Last lecture,

parameters were the weights of the linear perceptron. Next
lecture, we will list these for linear regression.
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K-Nearest Neighbor: Hyperparameter tuning using a validation set

Training Data (or training set)

• N samples/datapoints/instances: Dtrain = {(x1, y1), . . . , (xN, yN)}
• Used for learning representation f : x→ y

Testing Data

• M samples/datapoints/instances: Dtest = {(x1, y1), . . . , (xM, yM)}
• Used to assess how well f (·) will do in predicting an unseen sample

Validation Data (or validation/development set)

• L samples/datapoints/instances: Ddev = {(x1, y1), . . . , (xL, yL)}
• Used to optimize hyperparameter(s)

Train, test, validation data should not overlap

Dtrain ∩ Dtest ∩ Ddev = ∅
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Recipe for hyperparameter tuning with validation set

• For each hyperparameter value (or combination of values)
• Train model using Dtrain

• Evaluate model performance on Ddev

For K-NN: For K = 1, 3, . . .
• For all x ∈ Ddev , assign each sample to the majority class

determined by its K neighbors from the train data Dtrain (see
previous slide, K-Nearest Neighbor: Representation, K-NN
Model)

• Evaluate accuracy/error rate, etc. using all x ∈ Ddev

• Chose the model with the best performance on Ddev

For K-NN: Choose K with the best accuracy/error rate, etc.

• Evaluate the model on the test set Dtest

For K-NN: Similarly as we did for evaluating on Ddev
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Cross-validation

What if we don’t have a validation set?

We perform cross-validation

• Split train data into S equal parts

• Use each part as a validation set and all others as train set

• Chose the hyperparameter value (or combination of values) that
results in best average performance.
• Average computed across validation sets from all folds

Some practical sides of NNC How to tune to get the best out of it?

Cross-validation

What if we do not have validation data?

We split the training data into S
equal parts.

We use each part in turn as a
validation dataset and use the
others as a training dataset.

We choose the hyperparameter
such that on average, the model
performing the best

S = 5: 5-fold cross validation

Special case: when S = N, this will be leave-one-out.
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Recipe for cross-validation

• Split train data into S equal parts, each noted as Dtrain
s , s = 1,...,S

• For each hyperparameter value (e.g. K = 1, 3, . . .)
• For each s = 1, . . . ,S

• Train model using Dtrain \ Dtrain
S

• Evaluate model performance (noted as Es) on Dtrain
s

• Compute average performance for current hyperparameter
E = 1

s

∑S
s=1 Es

• Chose the hyperparameter corresponding to best average
performance E

• Use the best hyperparameter to train on a model using all Dtrain

• Evaluate the last model trained on all Dtrain using the best
hyperparameter on Dtest
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How to measure “neighbor nearness” with other distances?

Previously we have used the euclidean distance
(dominated by noise if #useful features is much smaller than #noisy
features)

nn(x) = arg min
n=1,...,N

‖x− xn‖22 = arg min
n=1,...,N

D∑
d=1

(xd − xnd)2

We can also use alternative distances

• L1, Manhattan, or city block distance

nn(x) = arg min
n=1,...,N

‖x− xn‖1 = arg min
n=1,...,N

D∑
d=1

|xd − xnd |

• Hamming distance (discrete data, # non-matching attributes)

nn(x) = arg min
n=1,...,N

D∑
d=1

1(xd 6= xnd)

where 1(a) = 1 if a true, 0 otherwise
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How to measure “neighbor nearness” with other distances?

Different distances might result in different sorting between samples

Example 1

• train data: A(3, 1, 1) belonging to class 1, B(2, 2, 2) belonging to
class 2

• test data: X (1, 1, 1)

• l1(A,X ) = |2|+ |0|+ |0| = 2
l1(B,X ) = |1|+ |1|+ |1| = 3
→ X in class 1

• l2(A,X ) =
√
|2|2 + |0|+ |0| = 2

l2(B,X ) =
√
|1|2 + |1|2 + |1|2 =

√
3

→ X in class 2
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How to measure “neighbor nearness” with other distances?

Distances depend on the units of the features

Example: one feature in cm and one in mm

dist(p1,p2) =
√

(60− 10)2 + (6− 1)2 = 2525

dist(p1,p3) =
√

(60− 10)2 + (1− 1)2 = 2500

rel changex-axis = 100 · 6−16 % = 83%

rel changedist = 100 · 2525−25002500 % = 1%

Proximity can change due to change in feature scales

Larger-scale features tend to inflate distance measure
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How to measure “neighbor nearness” with other distances?

Normalize data so that they have comparable range

Value changes across any feature can be equally reflected to the distance

metric, when features are normalized

xnd :=
xnd − x̄d√

sd

x̄d =
1

N

∑
n

xnd , sd =
1

N − 1

∑
n

(xnd − x̄d)2
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How to measure “neighbor nearness” with other distances?

Question

Assume the following train samples:

Class 1: y1 = (10, 4), y2 = (10, 13),

y3 = (10, 16)

Class 2: z1 = (6, 10), z2 = (14, 10)

And the following distance metrics:

D1 = (x− xk)T
[

1 0
0 1

]
(x− xk)

D2 = (x− xk)T
[

1 0
0 1/3

]
(x− xk)

In which class would a K-NN

classifier (K=3) classify sample

x = (10, 10) using distances D1 and

D2?

A) Class 1 for both D1 and D2

B) Class 2 for both D1 and D2

C) Class 1 for D1, Class 2 for D2

D) Class 2 for D1, Class 1 for D2
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How to measure “neighbor nearness” with other distances?

The correct answer is D

D1 = (x1 − xk1)2 + (x2 − xk2)2

D2 = (x1 − xk1)2 + 1
3 (x2 − xk2)2

Train
D1 D2Sample

y1 36 12
y2 9 3
y3 36 12
z1 16 16
z2 16 16

The 3 nearest neighbors of x based

on D1 are y2, z1, z2, so K-NN

decides Class 2

The 3 nearest neighbors of x based

on D2 are y1, y2, y3, so K-NN

decides Class 1

A) Class 1 for both D1 and D2

B) Class 2 for both D1 and D2

C) Class 1 for D1, Class 2 for D2

D) Class 2 for D1, Class 1 for D2
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What to do in the case of a tie?

• Randomly assign a class

• Assign the class with the highest frequency in the training set

• Classify the test sample according to the closest training sample
(1-NN), or according to the K-1 or K+1 training samples

• Decide by assigning a weight to each vote according to its distance
from the test sample (i.e. weighted K-NN)
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Condensed Nearest Neighbor

• Approximate way to reduce time/space complexity of K-NN

• Decrease number of stored training samples

• Select the smallest subset Z of Dtrain, such that when Z is used,
error does not increase

• Subset Z is determined once before running K-NN, therefore the
high computational cost is not during testing

• Local search that depends on the order of training samples
• Non-unique solution
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Condensed Nearest Neighbor

Algorithm 1 Pseudocode for Condensed Nearest Neighbor

1: Randomly initialize Z with a sample from Dtrain

2: repeat
3: for x ∈ Dtrain (in random order) do
4: Find x′ ∈ Z closest to x
5: if class(x)6=class(x′) then
6: add x to Z
7: end if
8: end for
9: until Z does not change
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Distance Weighting

• K-NN assumes that similar instances mean similar things

• Hence samples closest to the query point might matter most

• Weight each neighbor by their closeness to the test sample

wk =
exp (−dist(x, nnk(x)))∑

k∈knn(x) exp(−dist(x, nnk(x)))

vc =
∑

k∈knn(x)

wk · I(yk = c), c = 1, . . . ,C

y = f (x) = arg max
c=1,...,C

vc
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Summary

• Described a simple learning algorithm (K-NN)
• non-parametric (instance-based) learning algorithm
• “similar inputs will have similar outputs”
• high computational cost for large data
• guaranteed to approach Bayes error rate under ideal conditions

• Practical issues
• number of neighbors, type of distance → (cross-)validation

• Computationally “cheaper” options (e.g. condensed K-NN)

• Reading materials
• Alpaydin 8.1-8.5
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