Outline

- Perceptron
- Example & Representation
- Perceptron Learning Algorithm (PLA)

(* Part of the following slides are taken from Dr. Malik Magdon-Ismail’s Machine Learning class.*)
Perceptron: Example
Credit approval or denial

- Task: Approve or deny credit (binary classification task)
- Features: Salary, debt, years in residence, etc.
Perceptron: Example & Representation

• Input vector \(\mathbf{x} = [x_1, \ldots, x_d]^T \)

• Assign importance to input features and compute a Credit Score

\[
\text{CreditScore} = \sum_{i=1}^{D} w_i x_i
\]

In the above, weights convey importance if features are in the same range

• Approve credit if \(\sum_{i=1}^{D} w_i x_i > \text{threshold} \)

• Deny credit if \(\sum_{i=1}^{D} w_i x_i < \text{threshold} \)

• How to choose the importance of weights?
Perceptron: Example & Representation

• Approve credit if $\sum_{i=1}^{D} w_i x_i > \text{threshold}$
• Deny credit if $\sum_{i=1}^{D} w_i x_i < \text{threshold}$
• Can be written more formally as

$$h(x) = \text{sign}\left(\left(\sum_{i=1}^{d} w_i x_i\right) + w_0\right)$$

or

$$h(x) = \text{sign}(w^T x)$$

where $w = [w_0, w_1, \ldots, w_d]^T$ and $x = [1, x_1, \ldots, x_d]^T$
Perceptron: Representation

Classify data into two classes

• **Input:** \(\mathbf{x} \in \mathbb{R}^D \) (features, attributes, etc.)
• **Output:** \(y \in \{-1, 1\} \) (labels)
• **Model:** \(h : \mathbf{x} \rightarrow y \)

\[
h(\mathbf{x}) = \text{sign}(\mathbf{w}^T \mathbf{x}) = \begin{cases} 1, & \mathbf{w}^T \mathbf{x} > 0 \\ -1, & \mathbf{w}^T \mathbf{x} < 0 \end{cases}
\]
Perceptron: Representation

How to find the perpendicular vector to a line?
The vector perpendicular to line $w_1x_1 + w_2x_2 + w_0 = 0$ can be written as $n = [w_1, w_2]^T$ (See Supplementary Handout)
Perceptron: Representation

A perceptron fits the data by using a line to separate the +1 from −1 data.

Fitting the data: How to find a hyperplane that *separates* the data?
(“It’s obvious - just look at the data and draw the line,” is not a valid solution.)
Idea! Start with some weight vector and try to improve it.
Assuming that \(\{x_1, x_2, x_3\} \) belong to the same class \((y = 1)\), after the initial updates, successive corrections become smaller and the algorithm “fine tunes” the position of the weight vector.
Perceptron Learning Algorithm: Example

a) Random initialization of decision boundary

b) After correction with misclassified sample x1

c) After correction with misclassified sample x3

a) $w_0^T x_1 < 0, w_0^T x_2 > 0, w_0^T x_3 > 0$: Sample 1 is incorrectly classified, therefore we need to adjust w_0 so that we correct this.
b) We do so by adding x_1 to w_0, since this will shift the line so that x_1 lies on the right side of the line: $w_1 = w_0 + x_1$
b) \(\mathbf{w}_1 \mathbf{x}_1 > 0, \mathbf{w}_1 \mathbf{x}_2 > 0, \mathbf{w}_1 \mathbf{x}_3 < 0 \): Sample 3 is incorrectly classified, therefore we need to adjust \(\mathbf{w}_1 \) so that we correct this.

c) We do so by adding \(\mathbf{x}_3 \) to \(\mathbf{w}_1 \), since this will shift the line so that \(\mathbf{x}_3 \) lies on the right side of the line: \(\mathbf{w}_2 = \mathbf{w}_1 + \mathbf{x}_3 \)
Perceptron Learning Algorithm: Example

c) \(w_2^T x_1 > 0, w_2^T x_2 > 0, w_2^T x_3 > 0 \): All samples are correctly classified. No further action is needed.
Perceptron Learning Algorithm

A simple iterative method
Incremental learning on single example at a time

1. Initialization $\mathbf{w}(0) = 0$ (or any other vector)
2. for $t = 1, 2, 3, \ldots$
 a. From $\{(x_1, y_1), \ldots, (x_N, y_N)\}$ pick a misclassified sample
 b. Call the misclassified sample (x_s, y_s): $\text{sign}(\mathbf{w}(t)^T \mathbf{x}_s) \neq y_s$
 $(\mathbf{w}(t)^T \mathbf{x}_s = -1$ if $y_s = 1$; $\mathbf{w}(t)^T \mathbf{x}_s = 1$ if $y_s = -1)$
 c. Update the weight:
 $\mathbf{w}(t + 1) = \mathbf{w}(t) + y_s \mathbf{x}_s$
 d. $t \leftarrow t + 1$
Perceptron Learning Algorithm

Algorithm Learning Rate

• Vectors \mathbf{w} are not necessarily normalized
• If $\|\mathbf{w}(t)\| \gg \|\mathbf{x}_s\|$ the new weight vector $\mathbf{w}(t) + \mathbf{x}_s$ is almost equal to $\mathbf{w}(t)$
• We can add a learning rate $\alpha > 0$ in the update
 • $\mathbf{w}(t + 1) = \mathbf{w}(t) \pm \alpha \mathbf{x}_s$
 • if $\alpha \gg 0$, \mathbf{x}_s will have a large impact on the update
 • if $\alpha \equiv 0$, \mathbf{x}_s will not influence much the update
• Learning rate a typical hyperparameter of many learning algorithms and depends on the data of each problem
• It can be larger in the first learning steps, and decreasing later on, e.g., $\alpha = \frac{1}{t} c$, where t is the iteration and c is a constant
Perceptron Learning Algorithm

Algorithm Convergence

• The rule update considers a training sample at a time and may “destroy” the classification of other samples.

• If the data can be fit by a linear separator (linearly separable), then after some finite number of steps, PLA is guaranteed to arrive to a correct solution.

• What if the data cannot be fit by a perceptron?
 • We can find infinitely many combinations of perceptrons that fit the data → neural networks.
Perceptron Learning Algorithm

Algorithm Cost

- PLA is a local, greedy algorithm
- This can lead to an exponential number of updates of the weight
- In the following figure:
 - Two almost antiparallel vectors are to be classified in the same half-space
 - PLA rotates the separation line in one of the two directions and will require more and more time when the angle between the two vectors approaches 180 degrees

![Graph showing two vectors and a line](image)

Fig. 4.13. Worst case for perceptron learning (input space)
Parametric v.s. non-parametric models

• Many possible ways to categorize learning models
• One way is to ask this question
 • Does the model have a fixed number of parameters or does it grow with the amount of training data?
• Non-parametric models (or instance/memory-based)
 • more flexible
 • computationally intractable for large datasets
 • e.g. K-NN
• Parametric models
 • faster to use
 • make strong assumptions about data
 • e.g. linear perceptron, linear regression
Perceptron Learning Algorithm

Question
Assume the following 2-dimensional data space with three classes C_1, C_2, C_3, and three linear classification boundaries w_1, w_2, and w_3. If $x_1 \in C_1$, $x_2 \in C_2$, and $x_3 \in C_3$, please select the equations that hold:

(A) $w_1^T x_1 > 0$, $w_2^T x_2 > 0$, $w_3^T x_3 > 0$
(B) $w_1^T x_1 < 0$, $w_2^T x_2 < 0$, $w_3^T x_3 < 0$
(C) $w_1^T x_1 > 0$, $w_2^T x_2 < 0$, $w_3^T x_3 < 0$
(D) $w_1^T x_1 < 0$, $w_2^T x_2 > 0$, $w_3^T x_3 > 0$
Perceptron Learning Algorithm

Question
Assume the following 2-dimensional data space with three classes C_1, C_2, C_3, and three linear classification boundaries w_1, w_2, and w_3. If $x_1 \in C_1$, $x_2 \in C_2$, and $x_3 \in C_3$, please select the equations that hold:

(A) $w_1^T x_1 > 0$, $w_2^T x_2 > 0$, $w_3^T x_3 > 0$
(B) $w_1^T x_1 < 0$, $w_2^T x_2 < 0$, $w_3^T x_3 < 0$
(C) $w_1^T x_1 > 0$, $w_2^T x_2 < 0$, $w_3^T x_3 < 0$
(D) $w_1^T x_1 < 0$, $w_2^T x_2 > 0$, $w_3^T x_3 > 0$

Correct answer is A.
Multiclass perceptron

Perceptron representation for more than two classes

- **Input:** \(x \in \mathbb{R}^D \)
- **Output:** \(y \in \{1, 2, \ldots, K\} \)
- **Training data:** \(D^{\text{train}} = \{(x_1, y_1), \ldots, (x_N, y_N)\} \)
- **Model:** \(y = f(x) = \arg \max_{k \in \{1, \ldots, K\}} w_k^T x \) (the signed distance of sample \(x \) to its assigned class should be greater than its distance from all the other classes)
- **Model parameters:** weights \(w_1, \ldots, w_K \)

https://jermwatt.github.io/machine_learning_refined/notes/7_Linear_multiclass_classification/7_3_Perceptron.html
Multiclass perceptron

Perceptron learning for more than two classes

- **Input:** \(\mathbf{x} \in \mathbb{R}^D \)
- **Output:** \(y \in \{1, 2, \ldots, K\} \)
- **Training data:** \(\mathcal{D}^{\text{train}} = \{(\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_N, y_N)\} \)
- **Model:** \(y = f(\mathbf{x}) = \arg \max_{k \in \{1, \ldots, K\}} \mathbf{w}_k^T \mathbf{x} \) (the signed distance of sample \(\mathbf{x} \) to its assigned class should be greater than its distance from all the other classes)
- **Model parameters:** weights \(\mathbf{w}_1, \ldots, \mathbf{w}_K \)
- **Cost function:**
 \[
 \min_{\mathbf{w}_1, \ldots, \mathbf{w}_K} \frac{1}{N} \sum_{n=1}^{N} \left[(\max_{k=1, \ldots, K} \mathbf{w}_k^T \mathbf{x}_n) - \mathbf{w}_{y_n}^T \mathbf{x}_n \right]
 \]
 Minimizes the difference between signed distance of sample \(\mathbf{x}_n \) from currently assigned class, and sample \(\mathbf{x}_n \) from labelled (correct) class. Can be solved similar to the 2-class perceptron or via approximating the cost function followed by gradient descent.

https://jermwatt.github.io/machine_learning_refined/notes/7_Linear_multiclass_classification/7_3_Perceptron.html
Summary

• Perceptron is a simple learning algorithm
 • decision boundary defined by a hyper-plane
 • hyper-plane is learned from the training data

• Reading materials
 • Abu-Mostafa 1.1.2