$\mathbf{T}_{\mathbf{M}} \mid \mathbf{T}_{\mathbf{U} \ \mathbf{N} \ \mathbf{I} \ \mathbf{V} \ \mathbf{E} \ \mathbf{R} \ \mathbf{S} \ \mathbf{I} \ \mathbf{T} \ \mathbf{Y}$

CSCE 633: Machine Learning

Lecture 4

Overview

Linear Regression

- Example
- Representation, Evaluation
- Optimization: Closed form solution via Ordinary Least Squares
- Optimization: Numerical solution via Gradient Descent
 - General gradient descent
 - Gradient descent for linear regression (batch, stochastic, mini-batch)
- Non-linear basis function for regression & Overfitting

[Parts of these slides have been adapted from K. Murphy (Machine Learning: A probabilistic perspective), Dr. Andrew Ng's Machine Learning course at Coursera, and CSCI567 Machine Learning (USC, Drs. Sha & Liu)]

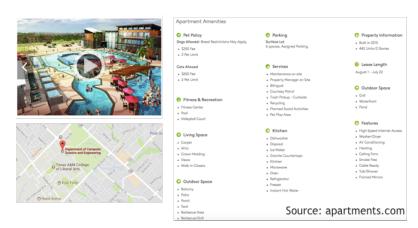
Overview

Linear Regression

- Example
- Representation, Evaluation
- Optimization: Closed form solution via Ordinary Least Squares
- Optimization: Numerical solution via Gradient Descent
 - General gradient descent
 - Gradient descent for linear regression (batch, stochastic, mini-batch)
- Non-linear basis function for regression & Overfitting

[Parts of these slides have been adapted from K. Murphy (Machine Learning: A probabilistic perspective), Dr. Andrew Ng's Machine Learning course at Coursera, and CSCI567 Machine Learning (USC, Drs. Sha & Liu)]

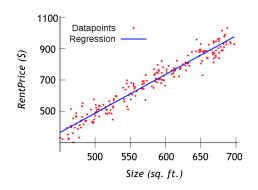
Linear Regression: Example



 $RentPrice = w_0 + w_1 \times Size + w_2 \times DistanceFromCS + \dots$

Linear Regression: Example

$$RentPrice = w_0 + w_1 \times Size + w_2 \times DistanceFromCS + \dots$$



Linear Regression: Example

$$RentPrice = w_0 + w_1 \times Size + w_2 \times DistanceFromCS + \dots$$

RentPrice =
$$w_0 + w_1 \times \text{Size} + w_2 \times \text{DistanceFromCS} + \dots$$

How do we find the unknown model parameters $\{w_0, w_1, w_2, ...\}$?

We use training data!

Training Sample	Size (sq.ft.)	DistanceFromCS (miles)	RentPrice (\$)
1	498	11.9	675
2	513	8.6	750
3	621	8.3	800
4	710	3.4	965

Overview

Linear Regression

- Example
- Representation, Evaluation
- Optimization: Closed form solution via Ordinary Least Squares
- Optimization: Numerical solution via Gradient Descent
 - General gradient descent
 - Gradient descent for linear regression (batch, stochastic, mini-batch)
- Non-linear basis function for regression & Overfitting

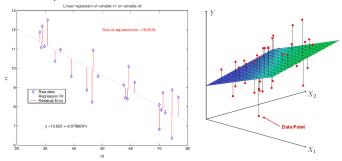
[Parts of these slides have been adapted from K. Murphy (Machine Learning: A probabilistic perspective), Dr. Andrew Ng's Machine Learning course at Coursera, and CSCI567 Machine Learning (USC, Drs. Sha & Liu)]

Linear Regression: Representation

- Input: $\mathbf{x} \in \mathbb{R}^{D+1}$ (D covariates/predictors/features, 1 extra term in the first position that corresponds to the bias term)
- Output: $y \in \mathbb{R}$ (responses, targets, outcomes, etc.)
- Training Data: $\mathcal{D} = \{(\mathbf{x_1}, y_1), \dots, (\mathbf{x_N}, y_N)\}$
- Model: $f: \mathbf{x} \to y, f(\mathbf{x}) = w_0 + \sum_{n=1}^{D} w_d x_d = \mathbf{w}^T \mathbf{x}$ w_0 : bias term
 - $\mathbf{w} = [w_0, w_1, \dots, w_D]^T \in \mathbb{R}^{D+1}$: parameters/weights

Linear Regression: Evaluation

Minimizing the difference between predicted and actual labels (i.e., prediction error)



1-dimentional input (left), 2-dimensional input (right)

Linear Regression: Evaluation

 A reasonable thing would be to minimize the prediction error (also called residual sum of squares)

$$RSS(\mathbf{w}) = \sum_{n=1}^{N} (y_n - f(\mathbf{x_n}))^2 = \sum_{n=1}^{N} \left[y_n - \left(w_0 + \sum_{n=1}^{D} w_d x_{nd} \right) \right]^2$$

 x_{nd} : d^{th} feature on the n^{th} training sample, N samples, D features

• An equivalent expression is: $RSS(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^T(\mathbf{y} - \mathbf{X}\mathbf{w})$

$$\mathbf{X} = \begin{bmatrix} & 1 & x_{11} & x_{12} & \dots & x_{1D} \\ & 1 & x_{21} & x_{22} & \dots & x_{2D} \\ & & \vdots & & & \\ & 1 & x_{N1} & x_{N2} & \dots & x_{ND} \end{bmatrix} = \begin{bmatrix} \mathbf{x_1}^T \\ \mathbf{x_2}^T \\ \vdots \\ \mathbf{x_N}^T \end{bmatrix}$$

$$\mathbf{y} = [y_1, \dots, y_N]^T, \mathbf{x_n} = [1, x_{n1}, \dots, x_{nD}]^T, \mathbf{w} = [w_0, w_1, \dots, w_D]^T$$

Overview

Linear Regression

- Example
- Representation, Evaluation
- Optimization: Closed form solution via Ordinary Least Squares
- Optimization: Numerical solution via Gradient Descent
 - General gradient descent
 - Gradient descent for linear regression (batch, stochastic, mini-batch)
- Non-linear basis function for regression & Overfitting

[Parts of these slides have been adapted from K. Murphy (Machine Learning: A probabilistic perspective), Dr. Andrew Ng's Machine Learning course at Coursera, and CSCI567 Machine Learning (USC, Drs. Sha & Liu)]

- Our goal is to find the solution w* to minimize the prediction error:
 w* = arg min_w RSS(w)
- The cost function has a 1st order derivative, which if we set to zero, we can find a **closed-form solution**

We will first expand the vector/matrix expression of RSS(w):

$$\begin{split} \textit{RSS}(w) &= (y - Xw)^T (y - Xw) = y^T y - y^T (Xw) - (Xw)^T y + (Xw)^T (Xw) \\ &= y^T y - 2(Xw)^T y + (Xw)^T (Xw) = y^T y - 2w^T (X^T y) + w^T (X^T X) w \end{split}$$

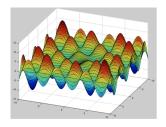
We then compute the first-order derivative $\frac{\vartheta RSS(\mathbf{w})}{\vartheta \mathbf{w}}$:

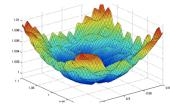
$$\frac{\vartheta RSS(\mathbf{w})}{\vartheta \mathbf{w}} = -2(\mathbf{X}^T \mathbf{y}) + 2(\mathbf{X}^T \mathbf{X}) \mathbf{w}$$

We set the first-order derivative to 0 and solve with respect to w:

$$\frac{\vartheta RSS(\mathbf{w})}{\vartheta \mathbf{w}} = 0 \Rightarrow -2(\mathbf{X}^T \mathbf{y}) + 2(\mathbf{X}^T \mathbf{X}) \mathbf{w} = 0 \Rightarrow (\mathbf{X}^T \mathbf{X}) \mathbf{w} = (\mathbf{X}^T \mathbf{y}) \Rightarrow \mathbf{w} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Why should convexity be a problem in optimization?





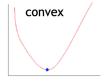
Loss functions might have more than one local optima (minima or maxima)

Theorem

Consider an optimization problem:

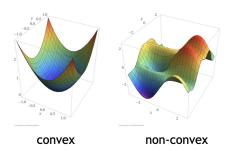
 $\min f(\mathbf{x})$ s.t. $\mathbf{x} \in \Omega$ where f is a convex function and Ω is a convex set.

Then any local minimum is also a global minimum



The second order derivative test

If the Hessian matrix $\mathbf{H_f}$ of function $f(\mathbf{x})$ is positive semi-definite, then f is convex, i.e., $\mathbf{u}^T\mathbf{H_f}\mathbf{u} \geq 0$ for every \mathbf{u}



Convexity of optimization criterion

$$\begin{split} RSS(\mathbf{w}) &= \mathbf{y}^T \mathbf{y} - 2\mathbf{w}^T (\mathbf{X}^T \mathbf{y}) + \mathbf{w}^T (\mathbf{X}^T \mathbf{X}) \mathbf{w} \\ \frac{\partial RSS(\mathbf{w})}{\partial \mathbf{w}} &= -2(\mathbf{X}^T \mathbf{y}) + 2(\mathbf{X}^T \mathbf{X}) \mathbf{w} \\ \mathbf{H}_{RSS(\mathbf{w})} &= \frac{\theta^2 RSS(\mathbf{w})}{2\omega^2} = \frac{\theta}{\theta \mathbf{w}} \left(\frac{\theta RSS(\mathbf{w})}{\theta \mathbf{w}} \right) = \frac{\theta}{\theta \mathbf{w}} \left(-2(\mathbf{X}^T \mathbf{y}) + 2(\mathbf{X}^T \mathbf{X}) \mathbf{w} \right) = 2(\mathbf{X}^T \mathbf{X}) \end{split}$$

For every $\mathbf{u} \in \mathbb{R}^D$ we have (by applying the transpose product rule and the definition of /2-norm): $\mathbf{u}^T \mathbf{H}_{RSS(\mathbf{w})} \mathbf{u} = 2\mathbf{u}^T (\mathbf{X}^T \mathbf{X}) \mathbf{u} = 2\mathbf{u}^T \mathbf{X}^T \mathbf{X} \mathbf{u} = 2(\mathbf{X}\mathbf{u})^T \mathbf{X} \mathbf{u} = 2\|\mathbf{X}\mathbf{u}\|_2^2 \geq 0$

Therefore the Hessian $\mathbf{H}_{RSS(\mathbf{w})}$ of the RSS error is positive semi-definite, thus $RSS(\mathbf{w})$ is convex and any local optima is a global minimum. Therefore the solution $\mathbf{w}^* = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y} \in \mathbb{R}^D$ is a global minimum of the RSS error of the linear regression problem.

Question: Assume the following non-linear regression model. Which if the following is true?

$$y = w_0 + w_1 x + w_2 x^2$$

$$\mathcal{D}^{train} = \{ (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N) \}$$

$$RSS(w_0, w_1, w_2) = \sum_{n=1}^{N} (y_n - (w_0 + w_1 x_n + w_2 x_n^2))^2$$

- (A) We don't know if RSS has a global minimum with respect to $[w0, w1, w2]^T$
- (B) RSS has a single local minimum w.r.t. $[w0, w1, w2]^T$, which is also global
- (C) It depends on the training data whether RSS has a minimum

Question: Assume the following non-linear regression model. Which if the following is true?

$$y = w_0 + w_1 x_1 + w_2 x^2$$

$$\mathcal{D}^{train} = \{ (\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N) \}$$

$$RSS(w_0, w_1, w_2) = \sum_{n=1}^{N} (y_n - (w_0 + w_1 x_n + w_2 x_n^2))^2$$

- (A) We don't know if RSS has a global minimum with respect to $[w0, w1, w2]^T$
- (B) RSS has a single local minimum w.r.t. $[w0, w1, w2]^T$, which is also global
- (C) It depends on the training data whether RSS has a minimum

The correct answer is B. RSS is a convex function w.r.t. w, because the only thing that has changed in the loss function is the data matrix, rather than the weight vector.

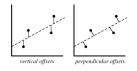
Question: In a linear regression problem with one input variable, which of the following distances (offsets) do we use when we compute the residual sum of squares (RSS) error?



x-axis: input feature: v-axis: output

- (A) Vertical offset
- (B) Perpendicular offset
- (C) Either, depending on the situation

Question: In a linear regression problem with one input variable, which of the following distances (offsets) do we use when we compute the residual sum of squares (RSS) error?



x-axis: input feature; y-axis: output

- (A) Vertical offset
- (B) Perpendicular offset
- (C) Either, depending on the situation

The correct answer is A. The RSS error measures the distance between ground truth and predicted values with respect to the output space (y-axis).

Overview

Linear Regression

- Example
- Representation, Evaluation
- Optimization: Closed form solution via Ordinary Least Squares
- Optimization: Numerical solution via Gradient Descent
 - General gradient descent
 - Gradient descent for linear regression (batch, stochastic, mini-batch)
- Non-linear basis function for regression & Overfitting

[Parts of these slides have been adapted from K. Murphy (Machine Learning: A probabilistic perspective), Dr. Andrew Ng's Machine Learning course at Coursera, and CSCI567 Machine Learning (USC, Drs. Sha & Liu)]

Linear Regression: Computational Complexity

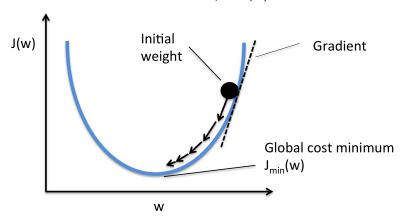
- Bottleneck for computing the solution $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ is to invert the matrix $\mathbf{X}^T \mathbf{X} \in \mathbb{R}^{D \times D}$
- Computational complexity is $O((D+1)^3)$ using Gauss-Jordan elimination
 - Impractical for large D
- Alternative
 - Find approximate solution through an iterative optimization algorithm
 - e.g. Gradient Descent

Gradient Descent

- Iterative algorithm finding a function's minimum via local search
- Standard optimization algorithm in many ML applications
 - e.g. linear regression, logistic regression
 - scales well to large datasets (e.g. no matrix multiplication)
 - proof that it solves many convex problems
 - good heuristic to non-convex problems as well
- Input: Function $J(\mathbf{w}) \in \mathbb{R}$
- Output: Local minimum w*
- Goal: Minimize $J(\mathbf{w})$ via greedy local search

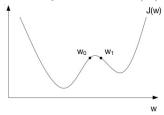
Gradient Descent

1-dimensional example: $J(w) = w^2$



Gradient Descent: 1-dimensional case

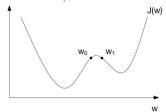
What will happen if we try to minimize J(w) via a local search?



- Starting from w₀
 - We look to the right $(J(w) \uparrow)$ and to the left $(J(w) \downarrow)$
 - We take a small step to the left
 - We repeat the above until we reach the left basin
- Starting from w₁
 - We similarly reach the right basin
- It is clear that the outcome depends on the starting point

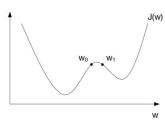
Gradient Descent: 1-dimensional case

More formally, we do the following



- $J'(w) = \frac{dj(w)}{dw} \approx \frac{J(w+\epsilon)-J(w)}{\epsilon}$, for $\epsilon \to 0$ (def. 1st order derivative)
- While $J'(w) \neq 0$
 - If J'(w) > 0 (i.e. $J(w + \epsilon) > J(w)$ and $J(w) \uparrow$), move w a little bit to the left
 - If J'(w) < 0 (i.e. $J(w + \epsilon) < J(w)$ and $J(w) \downarrow$), move w a little bit to the right
- The derivative J'(w) is used to decide which direction to move
- In other words, move w towards the direction of -J'(w)

Gradient Descent: Algorithm Outline

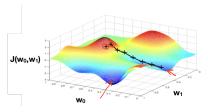


1-dimensional

- 1 Initialize w, ϵ , $\alpha(\cdot)$, k := 0
- 2 While $\left|\frac{dJ(w)}{dw}\right| > \epsilon$

$$2a \ k := k + 1$$

2b
$$w := w - \alpha(k) \cdot \frac{dJ(w)}{dw}$$

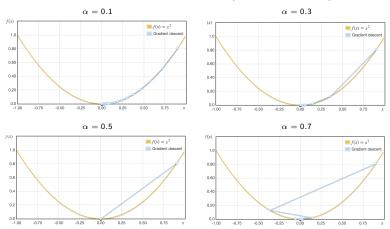


[Source: Machine Learning, Coursera, Andrew Ng]

- 1 Initialize **w**, ϵ , $\alpha(\cdot)$, k := 0
- 2 While $\|\nabla J(\mathbf{w})\|_2 > \epsilon$

2a
$$k := k + 1$$

$$2b \mathbf{w} := \mathbf{w} - \alpha(\mathbf{k}) \cdot \nabla J(\mathbf{w})$$



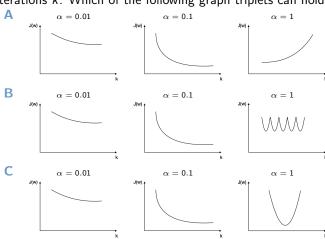
- If $\alpha(k)$ too small, convergence is unnecessarily slow
- If $\alpha(k)$ too large, correction process will overshoot and can diverge

Source: http://www.onmyphd.com/?p=gradient.descent

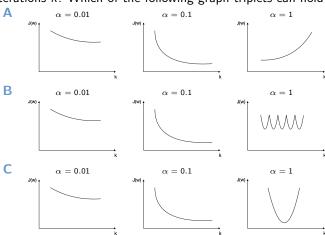
How to chose α ?

- In practice, through experimentation
 - Check how $J(\mathbf{w})$ behaves over iterations for multiple α
 - ullet α is a hyper-parameter
 - Therefore it can be tuned using a dev-set or a cross-validation framework

Question: A cost function $J(\mathbf{w})$ is optimized with Gradient Descent (GD) using different step size values α . We plot $J(\mathbf{w})$ w.r.t. the number of GD iterations k. Which of the following graph triplets can hold?



Question: A cost function $J(\mathbf{w})$ is optimized with Gradient Descent (GD) using different step size values α . We plot $J(\mathbf{w})$ w.r.t. the number of GD iterations k. Which of the following graph triplets can hold?



All answers can occur.

Gradient Descent: Stopping rule

- Hyper-parameter ϵ (i.e. $\|\nabla J(\mathbf{w})\|_2 > \epsilon$) determines when to stop
- Small ϵ : many iterations but higher quality solution
- Large ϵ : less iterations with the cost of more approximate solution
- How to chose ϵ in practice?
 - Try various values to achieve balance between cost and precision
 - Again use some type of cross-validation framework
- Hyperparameters: Parameters set before the beginning of the learning process (e.g. α , ϵ in gradient descent)
- Hyperparameter tuning: The process of choosing a set of optimal hyperparameters for the learning process
- Model parameters: The parameters learned during the learning process (e.g. weights **w** in linear regression)

Overview

Linear Regression

- Example
- Representation, Evaluation
- Optimization: Closed form solution via Ordinary Least Squares
- Optimization: Numerical solution via Gradient Descent
 - General gradient descent
 - Gradient descent for linear regression (batch, stochastic, mini-batch)
- Non-linear basis function for regression & Overfitting

[Parts of these slides have been adapted from K. Murphy (Machine Learning: A probabilistic perspective), Dr. Andrew Ng's Machine Learning course at Coursera, and CSCI567 Machine Learning (USC, Drs. Sha & Liu)]

Gradient Descent in Linear Regression

We can now derive the algorithm outline for minimizing the residual square sum (RSS) error of linear regression with gradient descent

• The residual sum of squares is the cost function:

$$J(\mathbf{w}) = RSS(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^{T}(\mathbf{y} - \mathbf{X}\mathbf{w})$$

$$= \mathbf{y}^{T}\mathbf{y} - 2(\mathbf{X}\mathbf{w})^{T}\mathbf{y} + (\mathbf{X}\mathbf{w})^{T}(\mathbf{X}\mathbf{w})$$

$$= \mathbf{y}^{T}\mathbf{y} - 2\mathbf{w}^{T}(\mathbf{X}^{T}\mathbf{y}) + \mathbf{w}^{T}(\mathbf{X}^{T}\mathbf{X})\mathbf{w}$$

Gradient Descent optimization expression:

$$\mathbf{w} := \mathbf{w} - \alpha(\mathbf{k}) \cdot \nabla J(\mathbf{w})$$

$$\nabla J(\mathbf{w}) = \frac{\vartheta RSS(\mathbf{w})}{\vartheta \mathbf{w}} = -2\mathbf{X}^T \mathbf{y} + 2\mathbf{X}^T \mathbf{X} \mathbf{w}$$

Gradient Descent in Linear Regression

Question: Derive the algorithm outline for minimizing the residual square sum (RSS) error of linear regression with gradient descent

(Batch) Gradient Descent for Linear Regression

- 1 Initialize **w**, ϵ , $\alpha(\cdot)$, k := 0
- 2 While $\|\nabla RSS(\mathbf{w})\|_2 > \epsilon$
 - 2a k := k + 1
 - 2b $\mathbf{w} := \mathbf{w} \alpha(k) \cdot (\mathbf{X}^T \mathbf{X} \mathbf{w} \mathbf{X}^T \mathbf{y})$

Gradient Descent in Linear Regression

Stochastic Gradient Descent for Linear Regression

Update weights using one sample at a time

- 1 Initialize **w**, ϵ , $\alpha(\cdot)$, k := 0
- 2 Loop until convergence
 - $2a \ k := k + 1$
 - 2b Randomly choose a sample (x_i, y_i)
 - 2c Compute its contribution to the gradient $\mathbf{g_i} = (\mathbf{x_i}^T \mathbf{w} y_i) \cdot \mathbf{x_i}$
 - 2d Update the weights $\mathbf{w} := \mathbf{w} \alpha(\mathbf{k}) \cdot \mathbf{g_i}$

Gradient Descent in Linear Regression

Mini-Batch Gradient Descent for Linear Regression

Update weights using subset of samples at a time

- 1 Initialize **w**, ϵ , $\alpha(\cdot)$, k := 0
- 2 Loop until convergence

2a
$$k := k + 1$$

2b Randomly choose a subset of samples

$$S = \{(\mathbf{x_i}, y_i), \dots, (\mathbf{x_{i+M}}, y_{i+M})\}\$$

2c Form the mini-batch data matrix $\mathbf{X}_{S} = \begin{bmatrix} \mathbf{x_{i}}^{T} \\ \vdots \\ \mathbf{x_{i+M}^{T}} \end{bmatrix}$

2d Update the weights
$$\mathbf{w} := \mathbf{w} - \alpha(k) \cdot \left(\mathbf{X_S}^T \mathbf{X_S} \mathbf{w} - \mathbf{X_S}^T \mathbf{y} \right)$$

- Good compromise between batch and stochastic gradient descent
- Common mini-batch sizes range between M=50-250 samples

Gradient Descent in Linear Regression

- Batch gradient descent computes exact gradient
- Stochastic gradient descent
 - Computes approximate gradient using one sample per iteration
 - Its expectation equals the true gradient
- Mini-batch gradient descent
 - Computes gradient based on subset of samples
- For large-scale problems stochastic or mini-batch descent often work well

Overview

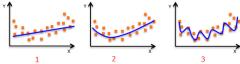
Linear Regression

- Example
- Representation, Evaluation
- Optimization: Closed form solution via Ordinary Least Squares
- Optimization: Numerical solution via Gradient Descent
 - General gradient descent
 - Gradient descent for linear regression (batch, stochastic, mini-batch)
- Non-linear basis function for regression & Overfitting

[Parts of these slides have been adapted from K. Murphy (Machine Learning: A probabilistic perspective), Dr. Andrew Ng's Machine Learning course at Coursera, and CSCI567 Machine Learning (USC, Drs. Sha & Liu)]

Non-Linear Regression

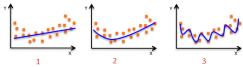
Question: Given a set of training data (red square points), which of the following regression models (blue line) would you choose to fit the data (and why)?



- A) Model 1, since the data depicts and increasing trend
- B) Model 2, since the line best captures the overall trend in the data
- C) Model 3, since the line provides the smallest RSS error

Non-Linear Regression

Question: Given a set of training data (red square points), which of the following regression models (blue line) would you choose to fit the data (and why)?

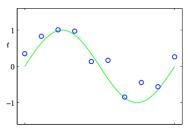


- A) Model 1, since the data depicts and increasing trend
- B) Model 2, since the line best captures the overall trend in the data
- C)Model 3, since the line provides the smallest RSS error

The correct answer is B. Model 1 is too simple for this data. Model 3 is too complex, and likely more difficult to generalize on new unseen data.

What if the data does not fit a line?

Example: Samples from a sine function



We can use a non-linear basis function

$$\phi(\mathbf{x}): \mathbf{x} \in \mathbb{R}^D
ightarrow \mathbf{z} \in \mathbb{R}^M$$

We can apply our linear regression model to the new features

$$y_i = \mathbf{w}^T \mathbf{z_i} = \mathbf{w}^T \phi(\mathbf{x_i})$$

$$RSS(\mathbf{w}) = \sum_{n=1}^{N} (y_i - \mathbf{w}^T \phi(\mathbf{x_i}))^2, \ \mathbf{w} \in \mathbb{R}^M$$

$$RSS(\mathbf{w}) = \sum_{n=1}^{N} (y_i - \mathbf{w}^T \phi(\mathbf{x_i}))^2, \ \mathbf{w} \in \mathbb{R}^M$$

Example: $\mathbf{x} = [x_1, x_2]^T \in \mathbb{R}^2, \ \phi(\mathbf{x}) = [x_1, x_2^2, x_1^3 + x_2]^T \in \mathbb{R}^3$

Non-Linear Basis Function

Residual sum of squares

$$RSS(\mathbf{w}) = \sum_{n=1}^{N} (\mathbf{y}_i - \mathbf{w}^T \phi(\mathbf{x}_i))^2 = (\mathbf{y} - \boldsymbol{\Phi} \mathbf{w})^T (\mathbf{y} - \boldsymbol{\Phi} \mathbf{w})$$

Non-linear design matrix

$$\boldsymbol{\varPhi} = \begin{bmatrix} \phi(\mathbf{x}_1)^T \\ \phi(\mathbf{x}_2)^T \\ \vdots \\ \phi(\mathbf{x}_N)^T \end{bmatrix} \in \mathbb{R}^{N \times M}$$

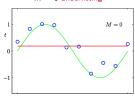
LMS solution with the non-linear design matrix

$$\mathbf{w}^{LMS} = (oldsymbol{\Phi}^T oldsymbol{\Phi})^{-1} oldsymbol{\Phi}^T \mathbf{y}$$

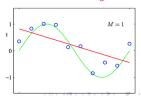
Non-Linear Basis Function

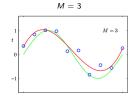
Example: Samples from a sine function

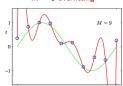
Polynomial basis function $\phi(\mathbf{x}) = [1 \times \dots \times^M]^T$



M = 1 underfitting





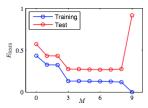


Weights of high order polynomials are very large

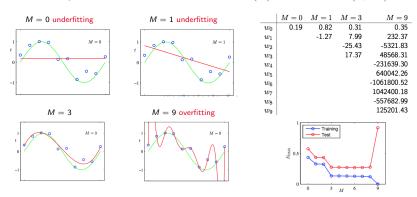
$$y_i = \mathbf{w}^T \mathbf{z_i} = \mathbf{w}^T \phi(\mathbf{x_i}), \ \mathbf{z_i} = \phi(\mathbf{x_i}) \in \mathbb{R}^M$$

	M=0	M = 1	M = 3	M = 9
w_0	0.19	0.82	0.31	0.35
w_1		-1.27	7.99	232.37
w_2			-25.43	-5321.83
w_3			17.37	48568.31
w_4				-231639.30
w_5				640042.26
w_6				-1061800.52
w_7				1042400.18
w_8				-557682.99
w_9				125201.43

- The risk of using highly flexible (complicated) models without enough data
- Leads to poor generalization
- How to detect overfitting?
 - Plot model complexity (e.g. polynomial order) versus objective function
 - As complexity increases, performance on training improves, while on testing first improves and then deteriorates
- How to avoid overfitting?
 - More data or regularization



Example: Non-linear regression $y = w_0 + w_1 x + w_2 x^2 + ... + w_M x^M$ Samples from a sine function $x_i = \sin(t_i)$, $t_i \sim \text{Uniform}(0, 2\pi)$

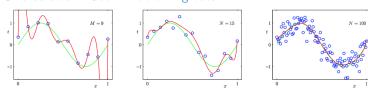


As model becomes more complex, performance on training keeps improving while on test data improve first and deteriorate later.

The larger a coefficient w_i , the easier for the model to "swing" in that dimension, increasing chance to fit more noise.

How can we avoid overfitting?

One solution: Use more training data

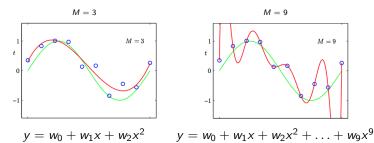


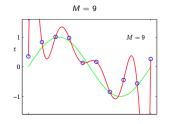
What if we don't have a lot of data?

Another solution: Use less features (e.g. feature selection algorithms) Intuitively, this will reduce the complexity of the model, therefore it is likely to result in less overfitting.

How can we avoid overfitting?

A more general solution: Regularization





How about penalizing and making small w_3, \ldots, w_9 ?

The cost function to be minimized would become:

$$J(\mathbf{w}) = RSS(\mathbf{w}) + w_3^2 + \dots w_9^2$$

But we may not know in advance which parameters we want to penalize \rightarrow So we can penalize them all

How can we avoid overfitting?

A more general solution: Regularization

Suppose we have a learning model whose evaluation criterion $EC(\mathbf{w})$ we want to optimize with respect to weights $\mathbf{w} = [w_1, \dots, w_D]^T$

•
$$J(\mathbf{w}) = EC(\mathbf{w}) + \lambda \sum_{d=1}^{D} w_d^2 = EC(\mathbf{w}) + \lambda \|\mathbf{w}\|_2^2$$

 $\rightarrow 12$ -norm regularization

•
$$J(\mathbf{w}) = EC(\mathbf{w}) + \frac{\lambda}{N} \sum_{d=1}^{D} w_d^2$$
 (as #data N increases, we need to worry less about overfitting)

•
$$J(\mathbf{w}) = EC(\mathbf{w}) + \lambda \sum_{d=1}^{D} \|w_d\| = EC(\mathbf{w}) + \lambda \|\mathbf{w}\|$$

 $\rightarrow 11$ -norm regularization

Evaluation criterion $EC(\mathbf{w})$ can be RSS or log-likelihood for linear regression, negative cross-entropy for logistic regression, etc.

 $\lambda \geq 0$ is the model complexity penalty

12-norm regularization

Linear:
$$J(\mathbf{w}) = RSS(\mathbf{w}) + \lambda \|\mathbf{w}\|_2^2 = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w}) + \lambda \|\mathbf{w}\|_2^2$$

Non-linear:
$$J(\mathbf{w}) = RSS(\mathbf{w}) + \lambda \|\mathbf{w}\|_2^2 = (\mathbf{y} - \boldsymbol{\Phi}\mathbf{w})^T (\mathbf{y} - \boldsymbol{\Phi}\mathbf{w}) + \lambda \|\mathbf{w}\|_2^2$$

Closed-form solution:

Linear:
$$\mathbf{w}^* = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}_{D \times D})^{-1} \mathbf{X}^T \mathbf{y}$$

Non-linear:
$$\mathbf{w}^* = (\mathbf{\Phi}^T \mathbf{\Phi} + \lambda \mathbf{I}_{D \times D})^{-1} \mathbf{\Phi}^T \mathbf{y}$$

The above reduces to ordinary least squares (OLS) solution when $\lambda=0$ (see handout for derivation)

Why would we need regularization in linear regression?

- Multicollinearity (or collinearity): the existence of near-linear relationships among the features
 - e.g., same variable represented in two different units
 - e.g., three ingredients of a mixture summing to 100% $(x_1 + x_2 + x_3 = 100)$
- Multicollinear variables result in data matrices close to non-invertible, therefore causing inaccurate estimates of the regression coefficients
- Regularization would cause some of the coefficients (potentially the ones corresponding to one of the multicollinear variables) to be close to zero

Question: Assume a set of samples generated from a sine function $x_i = \sin(t_i)$ (green line), modeled with **regularized** non-linear regression $y = w_0 + w_1 x + \ldots + w_9 x^9$. How does the resulting model (red line) look as we increase the amount of regularization λ ?

A)

 $\lambda = e^{-10}$

$$\lambda = 1$$

B)

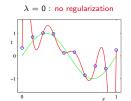
 $\lambda = e^{-10}$

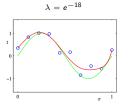
C)

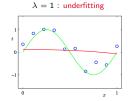
 $\lambda = e^{-10}$

Question: Assume a set of samples generated from a sine function $x_i = \sin(t_i)$ (green line), modeled with **regularized** non-linear regression $y = w_0 + w_1 x + \ldots + w_9 x^9$. How does the resulting model (red line) look as we increase the amount of regularization λ ?

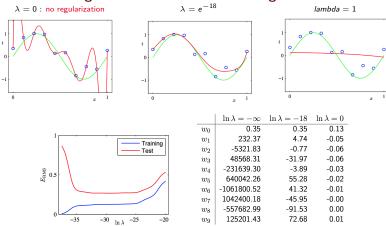
The correct answer is A







Overfitting is reduced with the help of increasing regularizers



For a complex model (M = 9), training error increases with increasing regularization.

Linear Regression: To summarize

Representation: linear and non-linear basis

$$f: \mathbf{x} \to y, \ f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}$$

 $f: \mathbf{z} \to y, \ f(\mathbf{x}) = \mathbf{w}^T \mathbf{z} = \mathbf{w}^T \phi(\mathbf{x}), \ \phi: \mathbf{x} \in \mathbb{R}^D \to \mathbf{z} \in \mathbb{R}^M$

• Evaluation: Minimizing residual sum of squares

$$\min_{\mathbf{w}} RSS(\mathbf{w}), RSS(\mathbf{w}) = (\mathbf{y} - \mathbf{X}\mathbf{w})^T (\mathbf{y} - \mathbf{X}\mathbf{w})$$

 $\min_{\mathbf{w}} RSS(\mathbf{w}), RSS(\mathbf{w}) = (\mathbf{y} - \mathbf{\Phi}\mathbf{w})^T (\mathbf{y} - \mathbf{\Phi}\mathbf{w})$

- Analytic Optimization: Ordinary least squares (OLS) solution $\mathbf{w}^* = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{v}, \quad \mathbf{w}^* = (\boldsymbol{\Phi}^T \boldsymbol{\Phi})^{-1} \boldsymbol{\Phi}^T \mathbf{v}$
- Approximate Optimization: Gradient descent (batch, stochastic, mini-batch)
- Readings: Alpaydin Ch 2, Abu-Mostafa Ch 3.2