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Overview

Brief probability review
Logistic Regression
® Representation and Intuition

® Evaluation through maximum-likelihood
® Optimization through gradient descent
[ ]

Convexity of evaluation criterion
Multiclass logistic regression

® Representation (derivation based on 2-class)
® Evaluation through cross-entropy error

Regularization for logistic regression
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General Probability Review

Example: Duration (sec) to answer a Multiple Choice Question

y 0 L] L L XCC O J L]

What do you observe?
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General Probability Review

Example: Duration (sec) to answer a MCQ
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What do you observe?
It is possible that the data are generated from a Gaussian distribution,
since most of the points lie in the middle, while some points are scattered
to the left and the right.
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General Probability Review

Normal distribution
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x ~N(0,0%) — p(x) == exp<f(X*“)2)

V2o 202
Mean i, variance o, precision 7 = 1/0?
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General Probability Review

Which model best describes the data?
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X
fi ~ N(10,2.25), f, ~ N(10,9), 3 ~ N(10,0.25), f4 ~ N(8,2.25)
Is there a systematic way to find the distribution that describes “best”
the data?
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General Probability Review
Which model best describes the data?
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 We can calculate the distribution of observing each of the data x,
o — )2
p(Xn|‘LL7O'2) = \/21771.0. exp (_( ”20_5‘) )' n= 17' L] N
® Find the joint distribution of all data X={xy, ..., xn} (likelihood)

N
p(‘X|;u'v 02) = P({Xl, e 7XN}|/1'7 02) = H p(Xn|lu‘v 02)
n=1

N
) I (_(X—M)Q>
nop V2mo 202
® Find the parameters p and ¢ that maximize this joint distribution
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Maximum likelihood estimation: Examples

Normal: models a sample from a population with continuous values

® X: Gaussian normal distributed with mean p and variance o2

2
® PDF: p(x) = \/2170 exp (—(X;U’;) )
® MLE estimation: Sample X = {x1,...,xn}
N N
m = uME — 2 n=1%n $2 = (g?)MLE = > pet O — pMHE)?

N N

i.e. the MLE estimate for the population mean is the sample mean

Note: Not all continuous variables follow the normal distribution, we
might have to perform statistical tests for that
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Maximum likelihood estimation

Independent identically distributed sample X = {xq,...,xy}
Assume all samples are drawn from the same distribution p(x|8)

We want to find @ that makes sampling from p(x|0) as likely as
possible — maximize likelihood

1(6]X) = p(X|6) = Hp(xnlﬁ’

Maximum Likelihood estimator (MLE): the parameter 9MLE

that maximizes the likelihood

oMLE — meax/(0|X)

For the sake of convenience, we take the log-likelihood
L(0|X) = log (0| X) = Z log p(x»|60)
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Bernoulli distribution
The probability distribution function (pdf) of a single experiment asking

a yes/no question

® Y: the outcome of a single trial

® Y ~ Bernoulli(#), where Y € {0,1}
® (). probability of outcome 1, 1 — #: probability of outcome 0
_ _ 0 =1
— ly=1)(1 — 9)Iy=0) — gy(1 — H)1-Y = Y
 plyI6) =001 - 000 —pra oy ={ | Y]

® e.g. coin toss experiment
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Binomial distribution

The probability distribution function (pdf) of 2 possible outcomes over N
independent trials

® Y: the number of times outcome 1 will get selected
® Y ~ Binomial(#, N), where Y € {0, N}

0: probability of outcome 1

P(Y|9, N) I(N ol 9}’(1 ) i

020 025

010 015

000 005
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Multinomial distribution
The probability distribution function (pdf) of K possible outcomes over

N independent trials

® Y): the number of times outcome k will get selected
(Y1,..., Yk) ~ Multinomial(6y, ..., 0k, N), where Y, € {0, N}
® (,,...,0k: probabilities of outcomes 1,..., K

i y= [}/17Y27--~7}/K]
p(y|9]_, . .,0}(, N) - #9{16%’2 . G)i/(K

Trinomial Distribution

01

Probability Mass
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Overview

® |ogistic Regression
® Representation and Intuition

® Evaluation through maximume-likelihood
® QOptimization through gradient descent
® Convexity of evaluation criterion

[ ]
[ ]

[ ]
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Logistic regression

Three linear models that we have seen so far

D
S = WTX = Ed:l Wy Xd

linear classification linear regression logistic regression
h(x) = sign(s) h(x) = s h(x) = 0(s)
Xo
Xo
X X1
x s
. s x ° h(x) 2 ey
x; h(x)

Xd
Xa

With logistic regression, we can find a soft threshold and model
uncertainty.
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Logistic regression

Three linear models that we have seen so far

Example of credit analysis

Approve P t Classification Error
or Deny ScepEron PLA, Pocket,. ..
Credit Amount Li R . Squared Error
Analysis of Credit {DCATENECETESSIOn Pseudo-inverse
Probability] Logistic R - Cross-entropy Error
of Default OEISHCEICEtessIon Gradient descent
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The sigmoid function

n
o(n) = % = 1ien
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Very nice properties
® Bounded between 0 and 1 < thus interpretable as a probability
® Monotonically increasing < thus can be used for classification rules

® o(n) > 0.5, positive class (y=1)
® o(n) < 0.5, positive class (y=0)

® Nice computational properties for optimizing criterion function
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Logistic Regression
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Classification task: whether a student passes or not the class
Features: SAT scores
Data: SAT scores v.s. fail/pass (y=0/1) (solid black dots)

Logistic regression:
® Assigns each score to “pass”’ probability (open red circles)
o If p(y = 1|x) > 0.5, then decides y(x) = 1. Otherwise, y(x) = 0.
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Logistic Regression

Parametric classification method (not regression method)
Sometimes referred as " generalization” of linear regression because
® We still compute a linear combination of feature inputs, i.e. w’x
e |nstead of predicting a continuous output variable from w’x
® We pass w'x through the sigmoid function o(w'x)

1
= ——, 0<o(n) <1
e 0Soln<

a(n)

® The above can be considered as the parameter 6 of a Bernoulli

distribution
p(y|x,w) = Ber(o(w'x))

The output belongs to class 1 (y = 1) with probability § = o(w'x)
and to class 0 (y = 0) with probability 1 — 0 =1 — o(wx).
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Logistic Regression: Representation

Setup for two classes
® Input: x € RP
e Output: y € {0,1}
e Training data: D" = {(xq,y1), ..., (xn, yn)}

® Model: 1
= ]_ = T =
ply = Lxw) = o(w). oln) = T
[ 1, p(y=1|x,w)>05
Y= 0, otherwise
® Model parameters: weights w
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Logistic Regression: Evaluation

Data likelihood for 1 training sample

_ J(WTXn)a Yn = 1 o T Yn . T 1—yn
P(Yn|Xn, W) = { 1= o(wTxa), yo=0 [~ [o(w'xn)] " [1— (W' xq)]
Data likelihood for all training data

N
L(Dlw) = Hpmxm )= [T low )] [1— o(wTx,)] "

Cross-entropy error (negative log-likelihood)
E(w) = —IogL(D|w)

= _Z{Yn Iog W xn)] +(1—y,,)|og [l—o'(wa")]}
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Logistic Regression: Optimization

Cross-entropy error (negative log-likelihood)

Z {)/n |Og o(w Xn)] + (1 —yn)log [1 - U(WTXn)]}

How to find the weights w of the logistic regression?
We can maximize data likelihood or minimize cross-entropy error

w* = min&(w)

w
No closed-form solution — approximate methods, e.g. Gradient Descent.
N

w:=w — a(k) - V&(w), % = Z (oW xn) = ¥n) Xnd

error

E(w) is convex, i.e. has a global minimum (positive definite Hessian).
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Overview

® Multiclass logistic regression

® Representation (derivation based on 2-class)
® Evaluation through cross-entropy error
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Multi-class logistic regression

Suppose we need to predict multiple classes/outcomes 1,...,C
® weather prediction: rainy, cloudy, shiny
® optical digit/character recongition: 0-9 or 'a’-'z’

2-class: probability of x belonging to class 1

ply = 1x,w) = o(w'x), (1) = o= = 1'g

How could we generalize to C classes?

WTX
® One way could be p(y = c|x,w¢) = g(w.x) = T
e%c
® This would not work, because each p(y = c|x,w¢) € [0, 1]

independently
® And we need 25:1 ply = c|x,w¢) € [0, 1]

But we can do the following (softmax function or conditional logit

model)
ply = clxowe) = £ — e
e T, e M e

c
=1 Py = clx,we) =1

x

Cx
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Multi-class logistic regression

Input: x € RP

Output: y € {1,2,...,C}

Training data: D" = {(xq,y1), ..., (XN, yn)}
Model:

y =arg max _p(y = c|x,wc
c=1,...,C

Model parameters: weights wy, ..., wc

i | T
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Multi-class logistic regression

Binary logistic regression is a special case of multi-class

T
eWe X

From p(y = c|x,w¢) = o ol for c = {0,1}, we get
c:le ¢
el x 1 1
p(y = 1‘X,WC) = ew[')"x + ewlTx = ewg—x—wlTx +1 = 14 e(wo—w1)Tx

Same as p(y = 1|x,w) = o(w'x) with w = wp — wy
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Multinomial distribution

Probability of each side: {f1,...,06}

We roll the dice 7 times and get the following observations/samples
X ={1,1,2,2,5,6,6}.

What is the likelihood of observing the above samples X7

® Transforming the observations/samples to one hot encoding:
X ={[1,0,0,0,0,0],[t,0,0,0,0,0],[0,1,0,0,0,0], [0,1,0,0,0,0],

x1=[x11,%12,1--,x16] Xa=Da1,%02,--.,%06] x3 xa
[0,0,0,0,1,0], 0,0,0,0,0, 1], [0,0,0,0,0, 1]}
* Probability of observing x1: p(x1) ~ 616963696262 = TT5_, 6}
* Probability of observing x3: p(x3) ~ 6260363696262 = TT5_, 6;*
* Data likelihood: L =[]’_, p(xa) = [1"_, TTo_, 0}
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Multi-class logistic regression: Optimization

® We will change y, € R to a C-dimensional vector (one hot encoding)

Yn = [yn17"'7ynC]T S RC

|1, ifyy=c
Yne = 0, otherwise

e.g. if y, =3 theny, =[0,0,1,0,...,0]" € R¢
® \We will maximize the likelihood

N
L(Dlwy,...,wc) = H P(Yn|Xn)
n=1
N
= (p(}/nl = 1|W1, .. .W(:)y"1 .. .p(y,,c = 1|W17 .. .wc)y"c)

n=1
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Multi-class logistic regression: Optimization

Data-likelihood

N
L(D‘le ) C) = HP(}/n|Xn)
n=1
N
=TT e = 1hwr. o we) . plyoc = 2w,
N C
H H P\WYnc = 1|W17 WC)y"C

Cross-entropy error

S(wl,...,wc):—

. Wc)y”c)

..Wc)
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Multi-class logistic regression: Optimization

Cross-entropy error

N C
5(W17---7Wc)I*zzy,m'ogp)/nc—ﬂwl,m )

n=1 c=1

Optimization with gradient descent, convex function
e Computational details are out of scope

® But the gradient vector w.r.t. each weight w¢ looks like this

Z[p }/nC*1|W17-~‘ )_}/nc]xn

error for class ¢

Similar to binary logistic regression — General property of
exponential family distributions
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Overview

® | ogistic Regression
® Representation and Intuition

® FEvaluation through maximum-likelihood
® Optimization through gradient descent
[ ]

Convexity of evaluation criterion
® Multiclass logistic regression

® Representation (derivation based on 2-class)
® FEvaluation through cross-entropy error

® Regularization for logistic regression
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Overfitting
Example: Non-linear regression y = wy + wix + wox? + ... + wyxM
Samples from a sine function x; = sin(t;), t; ~ Uniform(0, 27)

M = 0 underfitting M = 1 underfitting M=0 M=1 M=3 M=9
wy | 019 082 031 0.35

oo M=o 1 oo o1 w1 -1.27 7.99 232.37

° S~ wy 2543 -5321.83

o ‘\> ws 1737 48568.31
’ ¢ wy -231639.30
° s ° o ws 640042.26

° - ° wg -1061800.52

wy 1042400.18

wg -557682.99

M=3 M = 9 overfitting wy 125201.43

—6— Training
—6— Test

As model becomes more complex, performance on training keeps
improving while on test data improve first and deteriorate later.
The larger a coefficient w;, the easier for the model to "swing” in that
dimension, increasing chance to fit more noise.
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How can we avoid overfitting?
A more general solution: Regularization

y:W0+W1X+W2X2 y:W0+W1X+W2X2+...+W9X9
How about penalizing and making small ws, ..., wy?
The cost function to be minimized would become:
J(w) = RSS(w) + w2 +...w¢g
But we may not know in advance which parameters we want to penalize

— So we can penalize them all

32/38



RI,‘,, TEXAS A&M

UNIVERSITY

How can we avoid overfitting?
A more general solution: Regularization

Suppose we have a learning model whose evaluation criterion EC(w) we
want to optimize with respect to weights w = [wy, ..., wp]"

D
° J(w)=EC(w)+ XY w3i=EC(w)+ \|wl|3
d=1
— 12-norm regularization
D
* J(w)=EC(w)+ % > w3
d=1
(as #data N increases, we need to worry less about overfitting)
D
* J(w) = EC(w) + A > [[wall = EC(w) + Alw]|
d=1
— I1-norm regularization

Evaluation criterion EC(w) can be RSS or log-likelihood for linear
regression, negative cross-entropy for logistic regression, etc.
A > 0 is the model complexity penalty

33/38



AR TR e

Regularization for Logistic Regression

Z {ynlog [o(w xn)] + (1~ yn)log [1 — o(w'xa)] } + Xl|wl]3

sz

VE(w) = (W xn) = ¥n) Xn + 2w

n=1

N
Z w xn l—U(wan))-(xn~an) + Mpxp
- —,_/ —_———
€[0,1] €[o0,1] €RDXD

(see handout for derivations)
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How to choose the right amount of regularization?

® We cannot tune X on the train set. \Why?

® )\ is a hyper-parameter and we can tune it by:
® keeping out a hold-out-set independent of train and test sets
® doing cross-validation
® similar procedure to choosing K for K-NN

LT [ |
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Recipe for cross-validation for choosing A\

Split train data into S equal parts, each noted as D;""'i”, s=1,..,5
For each hyperparameter value (e.g. A =107°,107%,...)
® Foreachs=1,...,S

® Train model using D2 \ Dain
® Evaluate model performance (noted as E;) on D"

° Computesaverage performance for current hyperparameter
_1
E - E Zs:] ES
Chose the hyperparameter corresponding to best average
performance E

Use the best hyperparameter to train on a model using all D"
Evaluate the last model on Dt
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What have we learnt so far

Logistic Regression

Linear combination of input features w7 x

Transform through sigmoid function o(w'x) — interpretable as
probability

Decision rule based on whether o(w'x) < 0.5

Evaluation through data likelihood, or cross-entropy error

Z {ynlog [o(w xn)} +(1—yy)log [1— a(wan)]}

Optimization through gradient descent
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What have we learnt so far

Multinomial Regression

WTX
¢ Conditional logit model: p(y = c|x,w¢) = =

€ e
® Similar to 2-class logistic regression
® compute negative cross-entropy and perform gradient descent
Regularization
® Method to avoid overfitting
® Penalize large weights with 11 or I2-norm regularization
J(w) = EC(w) + Alw]3

Readings: Alpaydin 10.7; Abu-Mostafa 3
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