
CSCE 633: Machine Learning

Lecture 5



Overview

• Brief probability review

• Logistic Regression
• Representation and Intuition
• Evaluation through maximum-likelihood
• Optimization through gradient descent
• Convexity of evaluation criterion

• Multiclass logistic regression
• Representation (derivation based on 2-class)
• Evaluation through cross-entropy error

• Regularization for logistic regression
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General Probability Review

Example: Duration (sec) to answer a Multiple Choice Question

What do you observe?
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General Probability Review

Example: Duration (sec) to answer a MCQ

What do you observe?
It is possible that the data are generated from a Gaussian distribution,

since most of the points lie in the middle, while some points are scattered

to the left and the right.
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General Probability Review

Normal distribution

x ∼ N (0, σ2) → p(x) = 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
Mean µ, variance σ2, precision τ = 1/σ2
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General Probability Review

Which model best describes the data?

f1 ∼ N (10, 2.25), f2 ∼ N (10, 9), f3 ∼ N (10, 0.25), f4 ∼ N (8, 2.25)

Is there a systematic way to find the distribution that describes “best”

the data?

6 / 38



General Probability Review

Which model best describes the data?

• We can calculate the distribution of observing each of the data xn

p(xn|µ, σ2) = 1√
2πσ

exp
(
− (xn−µ)2

2σ2

)
, n = 1, . . . ,N

• Find the joint distribution of all data X={x1, . . . , xN} (likelihood)

p(X|µ, σ2) = p({x1, . . . , xN}|µ, σ2) =
N∏

n=1

p(xn|µ, σ2)

=
N∏

n=1

1√
2πσ

exp

(
− (xn − µ)2

2σ2

)
• Find the parameters µ and σ that maximize this joint distribution
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Maximum likelihood estimation: Examples

Normal: models a sample from a population with continuous values

• X : Gaussian normal distributed with mean µ and variance σ2

• PDF: p(x) = 1√
2πσ

exp
(
− (x−µ)2

2σ2

)
• MLE estimation: Sample X = {x1, . . . , xN}

m = µMLE =

∑N
n=1 xn
N

s2 = (σ2)MLE =

∑N
n=1 (xn − µMLE )2

N

i.e. the MLE estimate for the population mean is the sample mean

Note: Not all continuous variables follow the normal distribution, we

might have to perform statistical tests for that
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Maximum likelihood estimation

• Independent identically distributed sample X = {x1, . . . , xN}
• Assume all samples are drawn from the same distribution p(x |θ)

• We want to find θ that makes sampling from p(x |θ) as likely as
possible → maximize likelihood

l(θ|X ) ≡ p(X|θ) =
N∏

n=1

p(xn|θ)

• Maximum Likelihood estimator (MLE): the parameter θMLE

that maximizes the likelihood

θMLE = max
θ

l(θ|X )

• For the sake of convenience, we take the log-likelihood

L(θ|X ) ≡ log l(θ|X ) =
N∑

n=1

log p(xn|θ)
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Bernoulli distribution

The probability distribution function (pdf) of a single experiment asking

a yes/no question

• Y : the outcome of a single trial

• Y ∼ Bernoulli(θ), where Y ∈ {0, 1}
• θ: probability of outcome 1, 1− θ: probability of outcome 0

• p(y |θ) = θI(y=1)(1− θ)I(y=0) = θy (1− θ)1−y =

{
θ y = 1
1− θ y = 0

• e.g. coin toss experiment
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Binomial distribution

The probability distribution function (pdf) of 2 possible outcomes over N

independent trials

• Y : the number of times outcome 1 will get selected

• Y ∼ Binomial(θ,N), where Y ∈ {0,N}
• θ: probability of outcome 1

• p(y |θ,N) = N!
y !(N−y)!θ

y (1− θ)N−y
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Multinomial distribution
The probability distribution function (pdf) of K possible outcomes over

N independent trials

• Yk : the number of times outcome k will get selected

• (Y1, . . . ,YK ) ∼ Multinomial(θ1, . . . , θK ,N), where Yk ∈ {0,N}
• θ1, . . . , θK : probabilities of outcomes 1, . . . ,K

• y = [y1, y2, . . . , yK ]

• p(y|θ1, . . . , θK ,N) = N!
y1!...yK !θ

y1

1 θ
y2

2 . . . θyKK
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Overview

• Logistic Regression
• Representation and Intuition
• Evaluation through maximum-likelihood
• Optimization through gradient descent
• Convexity of evaluation criterion

• Multiclass logistic regression
• Representation (derivation based on 2-class)
• Evaluation through cross-entropy error

• Regularization for logistic regression
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Logistic regression

Three linear models that we have seen so far

s = wTx =
∑D

d=1 wdxd

With logistic regression, we can find a soft threshold and model
uncertainty.
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Logistic regression

Three linear models that we have seen so far

Example of credit analysis
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The sigmoid function

σ(η) = 1
1+e−η = eη

1+eη

Logistic regression General setup

Why the sigmoid function?

What does it look like?

�(a) =
1

1 + e�a

where

a = b + wTx
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Properties

Bounded between 0 and 1  thus, interpretable as probability

Monotonically increasing thus, usable to derive classification rules
1 �(a) > 0.5, positive (classify as ’1’)
2 �(a) < 0.5, negative (classify as ’0’)
3 �(a) = 0.5, undecidable

Nice computationally properties These will unfold in the next few
slides
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Very nice properties

• Bounded between 0 and 1 ← thus interpretable as a probability

• Monotonically increasing ← thus can be used for classification rules
• σ(η) > 0.5, positive class (y=1)
• σ(η) ≤ 0.5, positive class (y=0)

• Nice computational properties for optimizing criterion function
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Logistic Regression
1.4. Some basic concepts in machine learning 21
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Figure 1.19 (a) The sigmoid or logistic function. We have sigm(−∞) = 0, sigm(0) = 0.5, and
sigm(∞) = 1. Figure generated by sigmoidPlot. (b) Logistic regression for SAT scores. Solid black dots
are the data. The open red circles are the predicted probabilities. The green crosses denote two students
with the same SAT score of 525 (and hence same input representation x) but with different training labels
(one student passed, y = 1, the other failed, y = 0). Hence this data is not perfectly separable using just
the SAT feature. Figure generated by logregSATdemo.

1.4.6 Logistic regression

We can generalize linear regression to the (binary) classification setting by making two changes.
First we replace the Gaussian distribution for y with a Bernoulli distribution9,which is more
appropriate for the case when the response is binary, y ∈ {0, 1}. That is, we use

p(y|x,w) = Ber(y|µ(x)) (1.8)

where µ(x) = E [y|x] = p(y = 1|x). Second, we compute a linear combination of the inputs,
as before, but then we pass this through a function that ensures 0 ≤ µ(x) ≤ 1 by defining

µ(x) = sigm(wT x) (1.9)

where sigm(η) refers to the sigmoid function, also known as the logistic or logit function.
This is defined as

sigm(η) ! 1

1 + exp(−η)
=

eη

eη + 1
(1.10)

The term “sigmoid” means S-shaped: see Figure 1.19(a) for a plot. It is also known as a squashing
function, since it maps the whole real line to [0, 1], which is necessary for the output to be
interpreted as a probability.

Putting these two steps together we get

p(y|x,w) = Ber(y|sigm(wT x)) (1.11)

This is called logistic regression due to its similarity to linear regression (although it is a form
of classification, not regression!).

9. Daniel Bernoulli (1700–1782) was a Dutch-Swiss mathematician and physicist.

Classification task: whether a student passes or not the class

Features: SAT scores

Data: SAT scores v.s. fail/pass (y=0/1) (solid black dots)

Logistic regression:

• Assigns each score to “pass” probability (open red circles)

• If p(y = 1|x) > 0.5, then decides y(x) = 1. Otherwise, y(x) = 0.
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Logistic Regression

Parametric classification method (not regression method)

Sometimes referred as ”generalization” of linear regression because

• We still compute a linear combination of feature inputs, i.e. wTx

• Instead of predicting a continuous output variable from wTx
• We pass wTx through the sigmoid function σ(wTx)

σ(η) =
1

1 + e−η
, 0 ≤ σ(η) ≤ 1

• The above can be considered as the parameter θ of a Bernoulli
distribution

p(y |x,w) = Ber(σ(wTx))

The output belongs to class 1 (y = 1) with probability θ = σ(wTx)
and to class 0 (y = 0) with probability 1− θ = 1− σ(wTx).
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Logistic Regression: Representation

Setup for two classes
• Input: x ∈ RD

• Output: y ∈ {0, 1}
• Training data: Dtrain = {(x1, y1), . . . , (xN, yN)}
• Model:

p(y = 1|x,w) = σ(wTx), σ(η) =
1

1 + e−η

y =

{
1, p(y = 1|x,w) > 0.5
0, otherwise

• Model parameters: weights w
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Logistic Regression: Evaluation

Data likelihood for 1 training sample

p(yn|xn,w) =

{
σ(wTxn), yn = 1
1− σ(wTxn), yn = 0

}
=
[
σ(wTxn)

]yn [
1− σ(wTxn)

]1−yn
Data likelihood for all training data

L(D|w) =
N∏

n=1

p(yn|xn,w) =
N∏

n=1

[
σ(wTxn)

]yn [
1− σ(wTxn)

]1−yn
Cross-entropy error (negative log-likelihood)
E(w) = −logL(D|w)

= −
N∑

n=1

{
yn log

[
σ(wTxn)

]
+ (1− yn) log

[
1− σ(wTxn)

]}

20 / 38



Logistic Regression: Optimization

Cross-entropy error (negative log-likelihood)

E(w) = −
N∑

n=1

{
yn log

[
σ(wTxn)

]
+ (1− yn) log

[
1− σ(wTxn)

]}
How to find the weights w of the logistic regression?
We can maximize data likelihood or minimize cross-entropy error

w∗ = min
w
E(w)

No closed-form solution → approximate methods, e.g. Gradient Descent.

w := w − α(k) · ∇E(w),
ϑE(w)

ϑwd
=

N∑
n=1

(
σ(wTxn)− yn

)︸ ︷︷ ︸
error

xnd

E(w) is convex, i.e. has a global minimum (positive definite Hessian).
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Overview

• Logistic Regression
• Representation and Intuition
• Evaluation through maximum-likelihood
• Optimization through gradient descent
• Convexity of evaluation criterion

• Multiclass logistic regression
• Representation (derivation based on 2-class)
• Evaluation through cross-entropy error

• Regularization for logistic regression
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Multi-class logistic regression

• Suppose we need to predict multiple classes/outcomes 1, . . . ,C
• weather prediction: rainy, cloudy, shiny
• optical digit/character recongition: 0-9 or ’a’-’z’

• 2-class: probability of x belonging to class 1
p(y = 1|x,w) = σ(wTx), σ(η) = 1

1+e−η = en

1+en

• How could we generalize to C classes?

• One way could be p(y = c |x,wc) = σ(wc
Tx) = ewT

c x

1+ewT
c x

• This would not work, because each p(y = c |x,wc) ∈ [0, 1]
independently

• And we need
∑C

c=1 p(y = c |x,wc) ∈ [0, 1]

• But we can do the following (softmax function or conditional logit
model)

p(y = c |x,wc) = ewT
c x∑C

c=1 e
wT

c x
= ewT

c x

ewT
1

x+...+ewT
C

x∑C
c=1 p(y = c |x,wc) = 1
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Multi-class logistic regression

• Input: x ∈ RD

• Output: y ∈ {1, 2, . . . ,C}
• Training data: Dtrain = {(x1, y1), . . . , (xN, yN)}
• Model:

p(y = c |x,wc) =
ewT

c x∑C
c=1 e

wT
c x

y = arg max
c=1,...,C

p(y = c |x,wc)

• Model parameters: weights w1, . . . ,wC
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Multi-class logistic regression

Binary logistic regression is a special case of multi-class

From p(y = c |x,wc) = ewT
c x∑C

c=1 e
wT

c x
for c = {0, 1}, we get

p(y = 1|x,wc) =
ewT

1 x

ewT
0 x + ewT

1 x
=

1

ewT
0 x−wT

1 x + 1
=

1

1 + e(w0−w1)T x

Same as p(y = 1|x,w) = σ(wTx) with w = w0 −w1
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Multinomial distribution

Example: Dice with 6 sides: {1, 2, . . . , 6}
Probability of each side: {θ1, . . . , θ6}
We roll the dice 7 times and get the following observations/samples

X = {1, 1, 2, 2, 5, 6, 6}.
What is the likelihood of observing the above samples X?

• Transforming the observations/samples to one hot encoding:
X = {[1, 0, 0, 0, 0, 0]︸ ︷︷ ︸

x1=[x11,x12,...,x16]

, [1, 0, 0, 0, 0, 0]︸ ︷︷ ︸
x2=[x21,x22,...,x26]

, [0, 1, 0, 0, 0, 0]︸ ︷︷ ︸
x3

, [0, 1, 0, 0, 0, 0]︸ ︷︷ ︸
x4

,

[0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 1]}
• Probability of observing x1: p(x1) ∼ θ1

1θ
0
2θ

0
3θ

0
4θ

0
5θ

0
6 =

∏6
k=1 θ

x1k

k

• Probability of observing x3: p(x3) ∼ θ0
1θ

1
2θ

0
3θ

0
4θ

0
5θ

0
6 =

∏6
k=1 θ

x3k

k

• Data likelihood: L =
∏7

n=1 p(xn) =
∏7

n=1

∏6
k=1 θ

xnk
k
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Multi-class logistic regression: Optimization

• We will change yn ∈ R to a C-dimensional vector (one hot encoding)

yn = [yn1, . . . , ynC ]T ∈ RC

ync =

{
1, if yn = c
0, otherwise

e.g. if yn = 3 then yn = [0, 0, 1, 0, . . . , 0]T ∈ RC

• We will maximize the likelihood

L(D|w1, . . . ,wC) =
N∏

n=1

p(yn|xn)

=
N∏

n=1

(p(yn1 = 1|w1, . . .wC)yn1 . . . p(ynC = 1|w1, . . .wC)ynC )
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Multi-class logistic regression: Optimization

Data-likelihood

L(D|w1, . . . ,wC) =
N∏

n=1

p(yn|xn)

=
N∏

n=1

(p(yn1 = 1|w1, . . .wC)yn1 . . . p(ynC = 1|w1, . . .wC)ynC )

=
N∏

n=1

C∏
c=1

p(ync = 1|w1, . . .wC)ync

Cross-entropy error

E(w1, . . . ,wC) = −
N∑

n=1

C∑
c=1

ync log p(ync = 1|w1, . . .wC)

28 / 38



Multi-class logistic regression: Optimization

Cross-entropy error

E(w1, . . . ,wC) = −
N∑

n=1

C∑
c=1

ync log p(ync = 1|w1, . . .wC)

• Optimization with gradient descent, convex function

• Computational details are out of scope

• But the gradient vector w.r.t. each weight wc looks like this

∇Ewc =
N∑

n=1

[p(ync = 1|w1, . . .wC)− ync ]︸ ︷︷ ︸
error for class c

xn

• Similar to binary logistic regression → General property of
exponential family distributions
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Overview

• Logistic Regression
• Representation and Intuition
• Evaluation through maximum-likelihood
• Optimization through gradient descent
• Convexity of evaluation criterion

• Multiclass logistic regression
• Representation (derivation based on 2-class)
• Evaluation through cross-entropy error

• Regularization for logistic regression
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Overfitting
Example: Non-linear regression y = w0 + w1x + w2x

2 + . . .+ wMxM

Samples from a sine function xi = sin(ti ), ti ∼ Uniform(0, 2π)

M = 0 underfitting M = 1 underfitting

M = 3 M = 9 overfitting

As model becomes more complex, performance on training keeps

improving while on test data improve first and deteriorate later.

The larger a coefficient wi , the easier for the model to ”swing” in that

dimension, increasing chance to fit more noise.
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How can we avoid overfitting?

A more general solution: Regularization

M = 3 M = 9

y = w0 + w1x + w2x
2 y = w0 + w1x + w2x

2 + . . .+ w9x
9

How about penalizing and making small w3, . . . ,w9?

The cost function to be minimized would become:

J(w) = RSS(w) + w2
3 + . . .w2

9

But we may not know in advance which parameters we want to penalize

→ So we can penalize them all
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How can we avoid overfitting?

A more general solution: Regularization

Suppose we have a learning model whose evaluation criterion EC (w) we

want to optimize with respect to weights w = [w1, . . . ,wD ]T

• J(w) = EC (w) + λ
D∑

d=1

w2
d = EC (w) + λ‖w‖2

2

→ l2-norm regularization

• J(w) = EC (w) + λ
N

D∑
d=1

w2
d

(as #data N increases, we need to worry less about overfitting)

• J(w) = EC (w) + λ
D∑

d=1

‖wd‖ = EC (w) + λ‖w‖
→ l1-norm regularization

Evaluation criterion EC (w) can be RSS or log-likelihood for linear

regression, negative cross-entropy for logistic regression, etc.

λ ≥ 0 is the model complexity penalty
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Regularization for Logistic Regression

l2-norm regularization

E(w) = −
N∑

n=1

{
yn log

[
σ(wTxn)

]
+ (1− yn) log

[
1− σ(wTxn)

]}
+ λ‖w‖2

2

∇E(w) =
N∑

n=1

(
σ(wTxn)− yn

)
xn + 2λw

H =
N∑

n=1

σ(wTxn)︸ ︷︷ ︸
∈[0,1]

·
(
1− σ(wTxn)

)︸ ︷︷ ︸
∈[0,1]

·
(
xn · xn

T
)︸ ︷︷ ︸

∈RD×D

+ λID×D

(see handout for derivations)
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How to choose the right amount of regularization?

• We cannot tune λ on the train set. Why?

• λ is a hyper-parameter and we can tune it by:
• keeping out a hold-out-set independent of train and test sets
• doing cross-validation
• similar procedure to choosing K for K-NN

Some practical sides of NNC How to tune to get the best out of it?

Cross-validation

What if we do not have validation data?

We split the training data into S
equal parts.

We use each part in turn as a
validation dataset and use the
others as a training dataset.

We choose the hyperparameter
such that on average, the model
performing the best

S = 5: 5-fold cross validation

Special case: when S = N, this will be leave-one-out.
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Recipe for cross-validation for choosing λ

• Split train data into S equal parts, each noted as Dtrain
s , s = 1,...,S

• For each hyperparameter value (e.g. λ = 10−5, 10−4, . . .)
• For each s = 1, . . . ,S

• Train model using Dtrain \ Dtrain
S• Evaluate model performance (noted as Es) on Dtrain

s

• Compute average performance for current hyperparameter
E = 1

s

∑S
s=1 Es

• Chose the hyperparameter corresponding to best average
performance E

• Use the best hyperparameter to train on a model using all Dtrain

• Evaluate the last model on Dtest
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What have we learnt so far

Logistic Regression

• Linear combination of input features wTx

• Transform through sigmoid function σ(wTx) → interpretable as
probability

• Decision rule based on whether σ(wTx) ≶ 0.5

• Evaluation through data likelihood, or cross-entropy error

E(w) = −
N∑

n=1

{
yn log

[
σ(wTxn)

]
+ (1− yn) log

[
1− σ(wTxn)

]}
• Optimization through gradient descent

37 / 38



What have we learnt so far

Multinomial Regression

• Conditional logit model: p(y = c |x,wc) = ewT
c x∑C

c=1 e
wT

c x

• Similar to 2-class logistic regression
• compute negative cross-entropy and perform gradient descent

Regularization

• Method to avoid overfitting

• Penalize large weights with l1 or l2-norm regularization
J(w) = EC (w) + λ‖w‖2

2

Readings: Alpaydin 10.7; Abu-Mostafa 3
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