Overview

- Perceptron
 - Representation
 - Learning
 - Examples

- Multilayer Perceptron
 - Representation
 - Learning: Backpropagation
 - Practical issues
 - Activation Function
Overview

• Perceptron
 • Representation
 • Training
 • Examples

• Multilayer Perceptron
 • Representation
 • Learning: Backpropagation
 • Practical issues
 • Activation Function
Perceptron: Basic processing unit

- Inputs $x_d \in \mathbb{R}$, $d = 1, \ldots, D$
 - might come from the environment
 - might be the output of other perceptrons
- Associated with a connection weight $w_d \in \mathbb{R}$, $d = 1, \ldots, D$
- Output is some function of the linear combination of inputs
 - $y = s \left(\sum_{j=1}^{D} w_d x_d + w_0 \right) = s(\mathbf{w}^T \mathbf{x})$

 where $s(\alpha) = 1$, if $\alpha > 0$, $s(\alpha) = 0$, otherwise

 e.g. sigmoid activation: $s(\mathbf{x}, \mathbf{w}) = \frac{1}{1 + \exp(-\mathbf{w}^T \mathbf{x})}$
 - can be used for classification, i.e. choose C_1, if $s(\alpha) > 0.5$
Perceptron: Basic processing unit

- **Multiclass:** $K > 2$ outputs
 - $y_k = s\left(\sum_{d=1}^{D} w_{kd} x_d + w_{k0}\right) = s(w_k^T x)$
 - where w_{kj} is the weight from input x_j to output y_k
 - e.g. $s(x, w_1, \ldots, w_K) = \frac{\exp(w_k^T x)}{\sum_{k=1}^{K} \exp(w_k^T x)}$
 - 0/1 encoding for output vector
 - e.g. in a 4-class problem: if class=3, then $y = [0, 0, 1, 0]$
Overview

- **Perceptron**
 - Representation
 - Training
 - Examples
- **Multilayer Perceptron**
 - Representation
 - Learning: Backpropagation
 - Practical issues
 - Activation Function
Online training: Stochastic gradient descent

- Evaluation: cross-entropy function for 1 instance \((x_n, y_n)\)
 \[E(w) = -y_n \log \sigma(w^T x_n) - (1 - y_n) \log [1 - \sigma(w^T x_n)] \]
 \[E(w_1, \ldots, w_K) = - \sum_{k=1}^{K} y_{nk} \log p(y_{nk} = 1|w_1, \ldots, w_K) \]

- Optimization: gradient descent
 \[\frac{\partial E(w)}{\partial w_d} = (\sigma(w^T x_n) - y_n) x_{nd} \]
 \[\frac{\partial E(w)}{\partial w_{kd}} = (\sigma(w^T x_n) - y_{nk}) x_{nd} \]

We could have also performed batch gradient descent.
Perceptron: Training

Online training

• Cost-efficient (computationally and memory-wise)
• Nature of data can change over time
• Error function expressed in terms of individual samples
• Weight update performed after each instance is seen
Overview

• Perceptron
 • Representation
 • Training
 • Examples

• Multilayer Perceptron
 • Representation
 • Learning: Backpropagation
 • Practical issues
 • Activation Function
Approximating linear functions
Example: Boolean AND

Example of a perceptron implementing AND

\[y = s(x_1 + x_2 - 1.5) \]

\[w = [-1.5 \ 1 \ 1]^T \]

\[x = [1 \ x_1 \ x_2]^T \]

The above weights were empirically selected, but we could have also learned them through gradient descent
Approximating linear functions

Example: Boolean XOR

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Not linearly separable
Need combination of more than one perceptrons \rightarrow multilayer perceptrons
Multilayer Perceptron: Approximating non-linear functions

Example: Boolean XOR with multilayer perceptrons

<table>
<thead>
<tr>
<th>x_1</th>
<th>x_2</th>
<th>z_1</th>
<th>z_2</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Overview

- Perceptron
 - Representation
 - Learning
 - Examples

- Multilayer Perceptron
 - Representation
 - Learning: Backpropagation
 - Practical issues
 - Activation Function
Multilayer Perceptron

- Type of feedforward neural network
- Can model non-linear associations
- “Multi-level combination” of many perceptrons
Multilayer Perceptron: Representation

\[
\alpha_1^{(2)} = f(W_{11}^{(1)} x_1 + W_{12}^{(1)} x_2 + W_{13}^{(1)} x_3 + b_1^{(1)}) \\
\alpha_2^{(2)} = f(W_{21}^{(1)} x_1 + W_{22}^{(1)} x_2 + W_{23}^{(1)} x_3 + b_2^{(1)}) \\
\alpha_3^{(2)} = f(W_{31}^{(1)} x_1 + W_{32}^{(1)} x_2 + W_{33}^{(1)} x_3 + b_3^{(1)}) \\
\]

\[
h_{W,b}(x) = \alpha_1^{(3)} = f(W_{11}^{(2)} \alpha_1^{(2)} + W_{12}^{(2)} \alpha_2^{(2)} + W_{13}^{(2)} \alpha_3^{(2)} + b_1^{(2)})
\]

Terminology

- \(W_{ij}^{(l)} \): connection between unit \(j \) in layer \(l \) to unit \(i \) in layer \(l + 1 \)
- \(\alpha_i^{(l)} \): activation of unit \(i \) in layer \(l \)
- \(b_i^{(l)} \): bias connected with unit \(i \) in layer \(l + 1 \)

Forward propagation: The process of propagating the input to the output through the activation of inputs and hidden units to each node
Multilayer Perceptron: Representation

Matrix notation

\[
\alpha^{(2)} = f(W^{(1)}x + b^{(1)})
\]

\[
h_{W,b}(x) = \alpha^{(3)} = f(W^{(2)}\alpha^{(2)} + b^{(2)})
\]

\[
W^{(1)} = \begin{bmatrix}
W_{11}^{(1)} & W_{12}^{(1)} & W_{13}^{(1)} \\
W_{21}^{(1)} & W_{22}^{(1)} & W_{23}^{(1)} \\
W_{31}^{(1)} & W_{32}^{(1)} & W_{33}^{(1)}
\end{bmatrix}, \quad b^{(1)} = [b_1^{(1)} \ b_2^{(1)} \ b_3^{(1)}], \text{ etc.}
\]
Alternative architectures
2 hidden layers, multiple output units
e.g. medical diagnosis: different outputs might indicate presence or absence of different diseases
Question: How many parameters does this network have to learn?

A) 20
B) 26
C) 6
D) 12
Multilayer Perceptron

Question: How many parameters does this network have to learn?

A) 20
B) 26
C) 6
D) 12

The correct answer is B

\[[3 \times 4] + [4 \times 2] = 20 \text{ weights, } 4 + 2 = 6 \text{ biases} \]
Multilayer Perceptron

Learning of non-linear patterns
Multilayer perceptrons as universal approximators

A single-hidden-layer multilayer perceptron (MLP) is a universal function approximator

- A single-hidden-layer MLP can approximate any function to arbitrary precision
- But may require infinite neurons in the layer
- "Approximate" means that the function computed is not exact
- The target function needs to be continuous. This does not hold for discontinuous functions.
- In practice, the theorem does not take into account how trainable the given network might be using the available data.

Example: http://neuralnetworksanddeeplearning.com/chap4.html
Overview

- **Perceptron**
 - Representation
 - Learning
 - Examples

- **Multilayer Perceptron**
 - Representation
 - Learning: Backpropagation
 - Practical issues
 - Activation Function
Backpropagation

Multilayer Perceptron: Representation

• **Input:** \(x \in \mathbb{R}^D \)
• **Output:**
 - \(y \in \{0, 1\} \) or \(y \in \{1, \ldots, K\} \) (classification)
 - \(y \in \mathbb{R} \) or \(y \in \mathbb{R}^K \) (regression)
• **Training data:** \(\mathcal{D}^{train} = \{(x_1, y_1), \ldots, (x_N, y_N)\} \)
• **Model:** \(h_{W,b}(x) \)
 - represented through forward propagation (see previous slides)
• **Model parameters:** weights \(W^{(1)}, \ldots, W^{(L)} \) and biases \(b^{(1)}, \ldots, b^{(L)} \)

Multilayer Perceptron: Evaluation criterion

\[
J(W, b, \mathcal{D}^{train}) = \frac{1}{2} \| h_{W,b}(x) - y \|_2^2 \quad \text{(regression)}
\]

\[
J(W, b, \mathcal{D}^{train}) = y \log h_{W,b}(x) + (1 - y) \log(1 - h_{W,b}(x)) \quad \text{(classification)}
\]
Backpropagation

Multilayer Perceptron: Evaluation criterion

Regression

\[
J(W, b) = \frac{1}{N} \sum_{n=1}^{M} \frac{1}{2} \| h_{W,b}(x_n) - y_n \|^2 + \frac{\lambda}{2} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W^{(l)}_{ji})^2
\]

\(s_l\): # nodes in \(l^{th}\) layer

Classification

\[
J(W, b) = \frac{1}{N} \sum_{n=1}^{M} \left(y_n \log h_{W,b}(x_n) + (1 - y_n) \log(1 - h_{W,b}(x_n)) \right) + \frac{\lambda}{2} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W^{(l)}_{ji})^2
\]

We will perform gradient descent
Backpropagation

Gradient descent for regression

\[J(W, b) = \frac{1}{N} \sum_{n=1}^{M} \frac{1}{2} \left\| h_{W,b}(x_n) - y_n \right\|_2^2 + \frac{\lambda}{2} \sum_{l=1}^{L-1} \sum_{i=1}^{s_l} \sum_{j=1}^{s_{l+1}} (W_{ji}^{(l)})^2 \]

\[W_{ij}^{(l)} := W_{ij}^{(l)} - \alpha \frac{\partial J(W,b)}{\partial W_{ij}^{(l)}} \]

\[b_i^{(l)} := b_i^{(l)} - \alpha \frac{\partial J(W,b)}{\partial b_i^{(l)}} \]

Note: Initialize the parameters randomly \(\rightarrow\) symmetry breaking

Use backpropagation to compute partial derivatives \(\frac{\partial J(W,b)}{\partial W_{ij}^{(l)}}\) and \(\frac{\partial J(W,b)}{\partial b_i^{(l)}}\)
Backpropagation

Intuition

• Given a training example \((x_n, y_n)\), we run a "forward pass" to compute all the activations

• For each node \(i\) in layer \(l\), we compute an error term \(\delta^{(l)}_i\) that measures how much that node was "responsible" for any errors in the output
 • Output node: difference between activation and target value
 • Hidden nodes: weighted average of the error terms of the nodes from the previous layer (i.e. \(l + 1\))
Backpropagation

Backpropagation Implementation

- For each node i in output layer L
 \[\delta_i^{(L)} = (\alpha_i^{(L)} - y_i) f'(z_i^{(L)}) \]
- For each node i in layer $l = L - 1, L - 2, \ldots, 2$
 \[\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)} \right) f'(z_i^{(l)}) \]
- Compute the desired partial derivatives as:
 \[\frac{\partial J(W,b)}{\partial W_{ij}^{(l)}} = \alpha_i^{(l)} \delta_j^{(l+1)} \]
 \[\frac{\partial J(W,b)}{\partial b_{ij}^{(l)}} = \delta_i^{(l+1)} \]
- Update the weights as:
 \[W_{ij}^{(l)} := W_{ij}^{(l)} - \alpha \frac{\partial J(W,b)}{\partial W_{ij}^{(l)}} \]
 \[b_i^{(l)} := b_i^{(l)} - \alpha \frac{\partial J(W,b)}{\partial b_i^{(l)}} \]

[Detailed solution of example in Handouts for next class]
Backpropagation

Implementation

- Given a training example \((x_n, y_n)\), we run a ”forward pass” to compute all the activations
- For each node \(i\) in output layer \(L\)
 - \(\delta_i^{(L)} = (y_n - \alpha_i^{(L)}) f'(z_i^{(L)})\)
- For each node \(i\) in layer \(l = L - 1, L - 2, \ldots, 2\)
 - Hidden nodes: \(\delta_i^{(l)} = \left(\sum_{j=1}^{s_{l+1}} W_{ji}^{(l)} \delta_j^{(l+1)} \right) f'(z_i^{(l)})\)
- Compute the desired partial derivatives as:
 \[
 \frac{\partial J(W,b)}{\partial W_{ij}^{(l)}} = \alpha_j^{(l)} \delta_i^{(l+1)} \\
 \frac{\partial J(W,b)}{\partial b_i^{(l)}} = \delta_i^{(l+1)}
 \]
Overview

• Perceptron
 • Representation
 • Learning
 • Examples

• Multilayer Perceptron
 • Representation
 • Learning: Backpropagation
 • Practical issues
 • Activation Function
Determining number of layers and their sizes

Implementation

• The capacity of the network (i.e. the number of representable functions) increases as we increase the number of layers
• How to avoid overfitting?
Determining number of layers and their sizes

How to avoid overfitting

• Limit # layers and #hidden units per layers
• Early stopping: start with small weights and stop learning early
• Weight decay: penalize large weights (regularization)
• Noise: add noise to the weights

The effects of regularization strength: Each neural network above has 20 hidden neurons, but changing the regularization strength makes its final decision regions smoother with a higher regularization. You can play with these examples in this ConvNetsJS demo.

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
Determining number of layers and their sizes

How to avoid overfitting

- An alternative method that complements the above is dropout
- While training, dropout keeps a neuron active with some probability p (a hyperparameter), or sets it to zero otherwise

Determining number of layers and their sizes

How to chose the number of layers and nodes

• No general rule of thumb, this depends on:
 • Amount of training data available
 • Complexity of the function that is trying to be learned
 • Number of input and output nodes
• If data is linearly separable, you don’t need any hidden layers at all
• Start with one layer and hidden nodes proportional to input size
• Gradually increase
Overview

- Perceptron
 - Representation
 - Learning
 - Examples

- Multilayer Perceptron
 - Representation
 - Learning: Backpropagation
 - Activation Function
Activation Function

Transforms the activation level of a node (weighted sum of inputs) to an output signal

- **Sigmoid**: \(\sigma(x) = \frac{1}{1+e^{-x}} \)
- **Hyperbolic tangent**: \(s(x) = \tanh(x) = 2\sigma(2x) - 1 \)
- **Rectified Linear Unit (ReLU)**: \(f(x) = \max(0, x) \)
- **Leaky ReLU**: \(f(x) = (ax) \cdot \mathbb{I}(x < 0) + (x) \cdot \mathbb{I}(x \geq 0) \) (e.g. \(a = 0.01 \))
Activation Function

Sigmoid: \(s(x) = \frac{1}{1+e^{-x}} \)

- Transforms a real-valued number between 0 and 1
- Large negative numbers become 0 (not firing at all)
- Large positive numbers become 1 (fully-saturated firing)
- Used historically because of its nice interpretation
- **Saturates gradients**: The gradient at either extremes (0 or 1) is almost zero, “killing” the signal will flow
- **Non-zero centered output**: Can be problematic during training, since it can bias outputs toward being always positive or always negative, causing unnecessary oscillations during the optimization
Activation Function

Hyperbolic tangent: \(s(x) = \tanh(x) = 2\sigma(2x) - 1 \)

- Scaled version of sigmoid
- Transforms a real-valued number between -1 and 1
- Saturates gradients: Similar to sigmoid
- Output is zero-centered, avoiding some oscillation issues
Activation Function

Rectified Linear Unit (ReLU): $f(x) = \max(0, x)$

- Activation simply thresholded at zero
- Very popular during the last years
- Accelerates convergence (e.g. a factor of 6, see below) compared to the sigmoid/tanh (due to its linear, non-saturating form)
- Cheap implementation by simply thresholding at zero
- Activation can “die”: a large gradient flowing through a ReLU neuron could cause the weights to update in such a way that the neuron will never activate on any datapoint again, proper adjustment of learning rate can mitigate that
Leaky ReLU: $f(x) = (ax) \cdot I(x < 0) + (x) \cdot I(x \geq 0)$

- Instead of the function being zero when $x < 0$, leaky ReLU will have a small negative slope (e.g. $a = 0.01$)
- Some successful results, but not always consistent
Hyperparameter tuning

- **Learning rate**: how much to update the weight during optimization
- **Number of epochs**: number of times the entire training set pass through the neural network
- **Batch size**: the number of samples in the training set for weight update
- **Activation function**: the function that introduces non-linearity to the model (e.g. sigmoid, tanh, ReLU, etc.)
- **Number of hidden layers and units**
- **Dropout**: probability of dropping a unit

We can perform grid or randomized search over all parameters
What have we learnt so far

- Perceptrons are the basic processing unit of neural networks
- Simulate the “neural connectivity”
- Implemented by the linear combination of input features followed by an activation function, e.g. sigmoid
- Online learning
 - updating weights based on one sample at a time
- Examples implementing boolean functions
 - XOR: non-linear → impossible to implement with single perceptron
What have we learnt so far

• Multilayer perceptron is the basic feedforward neural network
• Hidden nodes simulate non-linear associations
• Backpropagation to find network weights
• Different activation functions
• Readings: Alpaydin 11.1-11.8.2
• Fun video: https://www.youtube.com/watch?v=zIkBYwdkuTk