
CSCE 633: Machine Learning

Lecture 6



Overview

• Perceptron
• Representation
• Learning
• Examples

• Multilayer Perceptron
• Representation
• Learning: Backpropagation
• Practical issues
• Activation Function

2 / 42



Overview

• Perceptron
• Representation
• Training
• Examples

• Multilayer Perceptron
• Representation
• Learning: Backpropagation
• Practical issues
• Activation Function

3 / 42



Perceptron: Basic processing unit

• Inputs xd ∈ R, d = 1, . . . ,D
• might come from the environment
• might be the output of other perceptrons

• Associated with a connection weight wd ∈ R, d = 1, . . . ,D

• Output is some function of the linear combination of inputs

• y = s
(∑D

j=1 wdxd + w0

)
= s(wTx)

where s(α) = 1, if α > 0, s(α) = 0, otherwise
e.g. sigmoid activation: s(x,w) = 1

1+exp(−wT x)

• can be used for classification, i.e. choose C1, if s(α) > 0.5

4 / 42



Perceptron: Basic processing unit

• Multiclass: K > 2 outputs

• yk = s
(∑D

d=1 wkdxd + wk0

)
= s(wT

k x)

where wkj is the weight from input xj to output yk

e.g. s(x,w1, . . . ,wK) = exp(wk
T x)∑K

k=1 exp(wk
T x)

• 0/1 encoding for output vector
• e.g. in a 4-class problem: if class=3, then y = [0, 0, 1, 0]

5 / 42



Overview

• Perceptron
• Representation
• Training
• Examples

• Multilayer Perceptron
• Representation
• Learning: Backpropagation
• Practical issues
• Activation Function

6 / 42



Perceptron: Training

Online training: Stochastic gradient descent
• Evaluation: cross-entropy function for 1 instance (xn, yn)
E(w) = −yn log

[
σ(wTxn)

]
− (1− yn) log

[
1− σ(wTxn)

]
E(w1, . . . ,wK) = −

∑K
k=1 ynk log p(ynk = 1|w1, . . .wK)

• Optimization: gradient descent
ϑE(w)
ϑwd

=
(
σ(wTxn)− yn

)
xnd

ϑE(w)
ϑwkd

=
(
σ(wTxn)− ynk

)
xnd

We could have also performed batch gradient descent.

7 / 42



Perceptron: Training

Online training
• Cost-efficient (computationally and memory-wise)

• Nature of data can change over time

• Error function expressed in terms of individual samples

• Weight update performed after each instance is seen

8 / 42



Overview

• Perceptron
• Representation
• Training
• Examples

• Multilayer Perceptron
• Representation
• Learning: Backpropagation
• Practical issues
• Activation Function

9 / 42



Approximating linear functions

Example: Boolean AND

Example of a perceptron implementing AND

y = s(x1 + x2 − 1.5)

w = [−1.5 1 1]T

x = [1 x1 x2]T

The above weights were empirically selected, but we could have also learned

them through gradient descent

10 / 42



Approximating linear functions

Example: Boolean XOR

Not linearly separable

Need combination of more than one perceptrons→ multilayer perceptrons

11 / 42



Multilayer Perceptron: Approximating non-linear functions

Example: Boolean XOR with multilayer perceptrons

x1 x2 z1 z2 r

0 0 0 1 1
0 1 0 0 0
1 0 0 0 0
1 1 1 0 1

12 / 42



Overview

• Perceptron
• Representation
• Learning
• Examples

• Multilayer Perceptron
• Representation
• Learning: Backpropagation
• Practical issues
• Activation Function

13 / 42



Multilayer Perceptron

• Type of feedforward neural network

• Can model non-linear associations

• “Multi-level combination” of many perceptrons

14 / 42



Multilayer Perceptron: Representation

α
(2)
1 = f (W

(1)
11 x1 + W

(1)
12 x2 + W

(1)
13 x3 + b

(1)
1 )

α
(2)
2 = f (W

(1)
21 x1 + W

(1)
22 x2 + W

(1)
23 x3 + b

(1)
2 )

α
(2)
3 = f (W

(1)
31 x1 + W

(1)
32 x2 + W

(1)
33 x3 + b

(1)
3 )

hW,b(x) = α
(3)
1 =

f (W
(2)
11 α

(2)
1 + W

(2)
12 α

(2)
2 + W

(2)
13 α

(2)
3 + b

(2)
1 )

Terminology

W
(l)
ij : connection between unit j in layer l to unit i in layer l + 1

α
(l)
i : activation of unit i in layer l

b
(l)
i : bias connected with unit i in layer l + 1

Forward propagation: The process of propagating the input to the output

through the activation of inputs and hidden units to each node

15 / 42



Multilayer Perceptron: Representation

Matrix notation

α(2) = f (W(1)x + b(1))

hW,b(x) = α(3) = f (W(2)α(2) + b(2))

W(1) =

 W
(1)
11 W

(1)
12 W

(1)
13

W
(1)
21 W

(1)
22 W

(1)
23

W
(1)
31 W

(1)
32 W

(1)
33

, b(1) = [b
(1)
1 b

(1)
2 b

(1)
3 ], etc.

16 / 42



Multilayer Perceptron: Representation

Alternative architectures

2 hidden layers, multiple output units

e.g. medical diagnosis: different outputs might indicate presence or

absence of different diseases

17 / 42



Multilayer Perceptron

Question: How many parameters does this network have to learn?

A) 20
B) 26
C) 6
D) 12

18 / 42



Multilayer Perceptron
Question: How many parameters does this network have to learn?

A) 20
B) 26
C) 6
D) 12

The correct answer is B
[3 x 4] + [4 x 2] = 20 weights, 4 + 2 = 6 biases

19 / 42



Multilayer Perceptron

Learning of non-linear patterns

20 / 42



Multilayer perceptrons as universal approximators

A single-hidden-layer multilayer perceptron (MLP) is a universal function

approximator

• A single-hidden-layer MLP can approximate any function to
arbitrary precision

• But may require infinite neurons in the layer

• ”Approximate” means that the function computed is not exact

• The target function needs to be continuous. This does not hold for
discontinuous functions.

• In practice, the theorem does not take into account how trainable
the given network might be using the available data.

Example: http://neuralnetworksanddeeplearning.com/chap4.html

21 / 42

http://neuralnetworksanddeeplearning.com/chap4.html


Overview

• Perceptron
• Representation
• Learning
• Examples

• Multilayer Perceptron
• Representation
• Learning: Backpropagation
• Practical issues
• Activation Function

22 / 42



Backpropagation

Multilayer Perceptron: Representation

• Input: x ∈ RD

• Output:
y ∈ {0, 1} or y ∈ {1, . . . ,K} (classification)
y ∈ R or y ∈ RK (regression)

• Training data: Dtrain = {(x1, y1), . . . , (xN, yN)}
• Model: hW,b(x)

represented through forward propagation (see previous slides)

• Model parameters: weights W(1), . . . ,W(L) and biases b(1), . . . ,b(L)

Multilayer Perceptron: Evaluation criterion

J(W,b,Dtrain) = 1
2‖hW,b(x)− y‖22 (regression)

J(W,b,Dtrain) = y log hW,b(x) + (1− y) log(1− hW,b(x)) (classification)

23 / 42



Backpropagation

Multilayer Perceptron: Evaluation criterion

Regression

J(W,b) = 1
N

∑M
n=1

1
2‖hW,b(xn)− yn‖22 + λ

2

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )2

sl : # nodes in l th layer

Classification

J(W,b) =
1

N

M∑
n=1

(yn log hW,b(xn) + (1− yn) log(1− hW,b(xn)))

+
λ

2

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )2

We will perform gradient descent

24 / 42



Backpropagation

Gradient descent for regression

J(W,b) = 1
N

∑M
n=1

1
2‖hW,b(xn)− yn‖22 + λ

2

L−1∑
l=1

sl∑
i=1

sl+1∑
j=1

(W
(l)
ji )2

W
(l)
ij := W

(l)
ij − α

ϑJ(W,b)

ϑW
(l)
ij

b
(l)
i := b

(l)
i − α

ϑJ(W,b)

ϑb
(l)
i

Note: Initialize the parameters randomly → symmetry breaking

Use backpropagation to compute partial derivatives ϑJ(W,b)

ϑW
(l)
ij

and ϑJ(W,b)

ϑb
(l)
i

25 / 42



Backpropagation

Intuition

• Given a training example (xn, yn), we run a ”forward pass” to
compute all the activations

• For each node i in layer l , we compute an error term δ
(l)
i that

measures how much that node was ”responsible” for any errors in
the output
• Output node: difference between activation and target value
• Hidden nodes: weighted average of the error terms of the

nodes from the previous layer (i.e. l + 1)

26 / 42



Backpropagation

[Detailed solution of example in Handouts for next class]

27 / 42



Backpropagation

Implementation

• Given a training example (xn, yn), we run a ”forward pass” to
compute all the activations

• For each node i in output layer L

• δ(L)i = (yn − α(L)
i )f ′(z

(L)
i )

• For each node i in layer l = L− 1, L− 2, . . . , 2

• Hidden nodes: δ
(l)
i =

(
sl+1∑
j=1

W
(l)
ji δ

(l+1)
j

)
f ′(z

(l)
i )

• Compute the desired partial derivatives as:
ϑJ(W,b)

ϑW
(l)
ij

= α
(l)
j δ

(l+1)
i

ϑJ(W,b)

ϑb
(l)
i

= δ
(l+1)
i

28 / 42



Overview

• Perceptron
• Representation
• Learning
• Examples

• Multilayer Perceptron
• Representation
• Learning: Backpropagation
• Practical issues
• Activation Function

29 / 42



Determining number of layers and their sizes

Implementation

• The capacity of the network (i.e. the number of representable
functions) increases as we increase the number of layers

• How to avoid overfittting?

30 / 42



Determining number of layers and their sizes

How to avoid overfitting

• Limit # layers and #hidden units per layers

• Early stopping: start with small weights and stop learning early

• Weight decay: penalize large weights (regularization)

• Noise: add noise to the weights

5
http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

31 / 42

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html


Determining number of layers and their sizes

How to avoid overfitting
• An alternative method that complements the above is dropout

• While training, dropout keeps a neuron active with some probability
p (a hyperparameter), or sets it to zero otherwise

https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/

32 / 42

https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/


Determining number of layers and their sizes

How to chose the number of layers and nodes

• No general rule of thumb, this depends on:
• Amount of training data available
• Complexity of the function that is trying to be learned
• Number of input and output nodes

• If data is linearly separable, you don’t need any hidden layers at all

• Start with one layer and hidden nodes proportional to input size

• Gradually increase

33 / 42



Overview

• Perceptron
• Representation
• Learning
• Examples

• Multilayer Perceptron
• Representation
• Learning: Backpropagation
• Activation Function

34 / 42



Activation Function

Transforms the activation level of a node (weighted sum of inputs) to an

output signal

• Sigmoid: σ(x) = 1
1+e−x

• Hyperbolic tangent: s(x) = tanh(x) = 2σ(2x)− 1

• Rectified Linear Unit (ReLU): f (x) = max(0, x)

• Leaky ReLU: f (x) = (ax) · I(x < 0) + (x) · I(x ≥ 0) (e.g. a = 0.01)

35 / 42



Activation Function

Sigmoid: s(x) = 1
1+e−x

• Transforms a real-valued number between 0 and 1

• Large negative numbers become 0 (not firing at all)

• Large positive numbers become 1 (fully-saturated firing)

• Used historically because of its nice interpretation

• Saturates gradients: The gradient at either extremes (0 or 1) is
almost zero, “killing” the signal will flow

• Non-zero centered output: Can be problematic during training,
since it can bias outputs toward being always positive or always
negative, causing unnecessary oscillations during the optimization

36 / 42



Activation Function

Hyperbolic tangent: s(x) = tanh(x) = 2σ(2x)− 1

• Scaled version of sigmoid

• Transforms a real-valued number between -1 and 1

• Saturates gradients: Similar to sigmoid

• Output is zero-centered, avoiding some oscillation issues

37 / 42



Activation Function

Rectified Linear Unit (ReLU): f (x) = max(0, x)

• Activation simply thresholded at zero

• Very popular during the last years

• Accelerates convergence (e.g. a factor of 6, see below) compared to
the sigmoid/tanh (due to its linear, non-saturating form)

• Cheap implementation by simply thresholding at zero

• Activation can “die”: a large gradient flowing through a ReLU
neuron could cause the weights to update in such a way that the
neuron will never activate on any datapoint again, proper
adjustment of learning rate can mitigate that

38 / 42



Activation Function

Leaky ReLU: f (x) = (ax) · I(x < 0) + (x) · I(x ≥ 0)

• Instead of the function being zero when x < 0, leaky ReLU will have
a small negative slope (e.g. a = 0.01)

• Some successful results, but not always consistent

39 / 42



Hyperparameter tuning

• Learning rate: how much to update the weight during optimization

• Number of epochs: number of times the entire training set pass
through the neural network

• Batch size: the number of samples in the training set for weight
update

• Activation function: the function that introduces non-linearity to
the model (e.g. sigmoid, tanh, ReLU, etc.)

• Number of hidden layers and units

• Dropout: probability of dropping a unit

We can perform grid or randomized search over all parameters

40 / 42



What have we learnt so far

• Perceptrons are the basic processing unit of neural networks

• Simulate the “neural connectivity”

• Implemented by the linear combination of input features followed by
an activation function, e.g. sigmoid

• Online learning
• updating weights based on one sample at a time

• Examples implementing boolean functions
• XOR: non-linear → impossible to implement with single

perceptron

41 / 42



What have we learnt so far

• Multilayer perceptron is the basic feedforward neural network

• Hidden nodes simulate non-linear associations

• Backpropagation to find network weights

• Different activation functions

• Readings: Alpaydin 11.1-11.8.2

• Fun video: https://www.youtube.com/watch?v=zIkBYwdkuTk

42 / 42

https://www.youtube.com/watch?v=zIkBYwdkuTk

