CSCE 633: Machine Learning

Lecture 8

‘ "IEXAS AsM

NIVERSITY

Overview

® Deep neural networks

Motivation & Challenges

Unsupervised pretraining: Deep belief networks &
autoencoders

(Supervised) fine-tuning

Alternative optimization methods

Convolutional neural networks

Recurrent neural networks

Long short term memory neural networks

[Contents of the following slides have been summarized from the NIPS 2010 & CVPR 2012 Deep Learning

Tutorials, and the Stanford CS231 class by Drs. Li, Johnson, & Yeung]

2/96

i ‘ TEXAS AsM

NIVERSITY

Overview

® Deep neural networks

® Motivation & Challenges
[]

3/9

Deep neural networks

Traditional recognition

classifier

edges

edges

edges

-

-»

SIFT/HOG

-»

-

“bus"?

classifier

histogram

histogram

-

-

“bus”?

classifier

Kcmeans/
sparse code

: Motivation

i | TEXAS ASM

UNIVERSITY

But what’s next?

- “bus”?

- classifier

shallower

deeper

\/

"bus"?

4/96

TEXAS A&M

UNIVERSITY

Deep neural networks: Motivation

Deep Learning

Specialized components, domain knowledge required

R A e
Generic components (“layers”), less domain knowledge
IR
Repeat elementary layers => Going deeper
B

* End-to-endlearning
* Richer solution space

5/96

‘ TEXAS AsM

NIVERSITY

Deep neural networks: Motivation

AlexNet, 8 layers
(ILSVRC 2012)

VGG, 19 layers
(ILSVRC 2014)

GoogleNet, 22 layers
(ILSVRC 2014)

“« € € €« €<

€ € EEEEEE

6/96

Deep neural networks: Motivation

® Deep Representations might allow for a hierarchy or representation

® Non-local generalization
® Comprehensibility

® Multiple levels of latent variables allow combinatorial sharing of
statistical strength

® Deep architectures work well (vision, audio, NLP, etc.)!

7/96

Deep neural networks: Motivation

Learn features from data
Use differentiable functions that produce features efficiently

End-to-end learning: no distinction between feature extractor and
classifier

“Deep” architectures: cascade of simpler non-linear modules

8/96

Deep neural networks: Motivation

® Natural progression from low Feature representation
level to high level structure as ﬁ’.‘?":: b
seen in natural complexity S i 3rd layer
L ot ~ Objects
® Easier to monitor what is being el @RIs
learnt and to guide the Qrs AQEIN=e
machine to better subspaces 1 2y i 2nd layer
LI, “Object parts”
® A good lower level Temh Ol <if ject parts

representation can be used for

.. 1st layer
many distinct tasks

“Edges”

Pixels

9/9

i | TEXAS ASM

UNIVERSITY

Deep neural networks: Motivation

® Multi-task learning

® Unsupervised training

task 1 task 2 task 3
output output output

C J J) (J

I | |
C) () ()

shared
(intermediate
| representation
C | D)
C)

raw input

10/96

Deep neural networks: Challenges

® Memory is used to store input data, weight parameters and
activations as an input propagates through the network

® Activations from a forward pass must be retained until they can be
used to calculate the error gradients in the backwards pass

® Example: 50-layer neural network
® 26 million weight parameters, 16 million activations in the

forward pass
® 168MB memory (assuming 32-bit float)

Parallelize computations with GPU (graphics processing units)

11/96

T | TEXAS s

VERSITY

Deep neural networks: Challenges

® Deep networks trained with backpropagation (without unsupervised
pretraining) perform worse than shallow networks

® Gradient is progressively getting more dilute

® Weight correction is minimal after moving back a couple of
layers

High risk of getting “stuck” to local minima

® |n practice, a small portion of data is labelled

Perform pretraining to mitigate this issue
Example error rates with and without pretraining

train. valid. test
DBN. unsupervised pre-training 0% 1.2% 1.2%
Deep net. auto-associator pre-training 00 1.4% 1.4%
Deep net. supervised pre-training 0 176 2.0%
Deep net, no pre-training D046 201% 24%
Shallow net, no pre-training 004 18% 1.9%
| 8

(Bengio et al., NIPS 2007)

12/96

i ‘ TEXAS AsM

NIVERSITY

Overview

® Deep neural networks
[]
® Unsupervised pretraining: Deep belief networks &
autoencoders

13/96

Deep neural networks: Unsupervised Pretraining

® This idea came into play when research studies found that a DNN
trained on a particular task (e.g. object recognition) can be applied
on another domain (e.g. object subcategorization) giving
state-of-the-art results
® 1st part: Greedy layer-wise unsupervised pre-training
® Each layer is pre-trained with an unsupervised learning
algorithm
® | earning a nonlinear transformation that captures the main
variations in its input (the output of the previous layer)
® 2nd part: Supervised fine-tuning
® The deep architecture is fine-tuned with respect to a
supervised training criterion with gradient-based optimization

® We will examine the deep belief networks and stacked autoencoders

Unusual form of regularization: minimizing variance and introducing bias
towards configurations of the parameter space that are useful for
unsupervised learning

14/96

erc)

test classification error (p:

TEXAS A&M

UNIVERSITY

Deep neural networks: Unsupervised Pretraining

AB
%’28
T o
E 224
]
. c 22|
i D 2
T - : ; T 2
ST S I g
i T H 73
N + - &' T T T
) ! - - 1
T 2o s B
Qa2 — - < 1 -
i 2 3 4 i 2 3 4 5
number of layers number of layers
Without pre-training With pre-training

[Source: Erhan et al., 2010]

15/96

L || RS

Deep neural networks: Unsupervised Pretraining

Pretraining is implemented by stacking several layers of Restricted
Boltzmann Machines (RBM) in a greedy manner

Assuming joint distribution between hidden h; and observed
variables x; with parameters W, b, c

P(x,h) oc exp(h"Wx + b"x + c"h)

P(x|h) = [1; P(xlh), P(xj = 1|h) = sigmoid(b; + >_; Wihi)
P(h[x) = [[; P(hi|x), P(h; = 1|x) = sigmoid(c; + >_; Wj;x;)
RBM trained by approximate stochastic gradient descent

This representation is extended to all hidden layers

The RBM parameters correspond to the parameters of the
feed-forward multi-layer neural network

16 /96

L |

Deep neural networks: Unsupervised Pretraining

® Step 1: Construct an RBM with an input and hidden layer and train
to find W)

® Step 2: Stack another hidden layer on top of the RBM to form a
new RBM

® Fix WL Assume h(Y) as input. Train to find W®).
e Step 3: Continue to stack layers and find weights W®), etc.

17/96

Deep neural networks: Unsupervised Pretraining

® Unsupervised algorithm that tries to learn an approximation of the
identity function hw p(x) =~ x

® Trivial problem unless we place constraints on the network, such as
by limiting the number of hidden units, we can discover interesting
structure about the data
e.g. if some of the input features are correlated, then this algorithm
will be able to discover some of those correlations

v o ol = FWMx+ W+ ...+ bY)

® Trained using back-propagation and
o additional sparsity constraints

® Can be also used for feature
transformation

R —>

tvert [http://ufldl.stanford.edu/wiki/index.php/Autoencoders_
ayer Ly

and_Sparsity]

LayerL,

18/96

http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity
http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity

Deep neural networks: Unsupervised Pretraining

X, X —
- hilte o —
I8 =
X H; X —> "
Hy
- , - hivs ! iy —
X, H} 2, —
W .
hil'« i —
X H B o—
e
R [’ M —
X; Hy %5 —>
Z 41 +1
% <1 X —>
+1
Input Features Il Output
Input Features | Output (Features)
*, !
K2 5 —> ply=01x
¥ !
—>P(y=01x) : N,
@ > on —>Py=11x
[x s
—>Ply=1]x h —>Ply=21%
2 * R
Lt
—>Py=21x . 0 .
+1
Input Softmax Iput Features| Featuresll Softmax
(Features Il) classifier classifier

19/96

i ‘ TEXAS AsM

IVERSITY

Deep neural networks: Unsupervised Pretraining

® Capture a “hierarchical grouping” of the input
® First layer learns a good representation of input features (e.g. edges)

® Second layer learns a good representation of the patterns in the first
layer (e.g. corners), etc.

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

20/96

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

i ‘ TEXAS AsM

NIVERSITY

Overview

® Deep neural networks

(Supervised) fine-tuning

21/96

Taking advantage of labelled data from large (publicly available)
datasets, e.g., VGG16

Tweak the parameters of an already trained network so that it
adapts to the new task at hand

Deep neural networks: Fine-tuning

Initial layers — learn general features
Last layers — learn features more specific to the task of interest

Fine-tuning freezes the first layers, and relearns weights from the last

22/96

i ‘ TEXAS AsM

NIVERSITY

Overview

® Deep neural networks
[]
[]

Alternative optimization methods

23/96

i ‘ TEXAS AsM

NIVERSITY

Alternative optimization methods

® Gradient becomes zero as we increase the # layers

® | ocal optima and saddle points become more common in high

dimensions

24/ 96

i ‘ TEXAS AsM

IVERSITY

Alternative optimization methods

® Movement through the parameter space is averaged over
multiple time steps

® Momentum speeds up movement along directions of strong
improvement (loss decrease) and also helps the network avoid
local minima

SGD SGD+Momentum
Vi1 = pog + V f(2)

Tppl = Tt — Vg1

Ty =1 — oV fxy)

while Truc: VX = O
dx = compute_gradient(x) while True:
x += learning rate * dx dx = compute_gradient(x)

VX = rho * vx + dx
x += learning_rate * vx

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically rho=0.9 or 0.99

25 /96

L || RS

Alternative optimization methods

Issue with noisy trajectories that diverge from optima

Gradient Noise

26 /96

"‘F" "I‘FXAS AsM

IVERSITY

Alternative optimization methods

Gradient term is not computed from current parameter
position x;

Gradient term is computed using the current position and
momentum Xx; + pv;

While the gradient term always points in the right direction,
the momentum term may not

If the momentum term points in the wrong direction or
overshoots, the gradient can still "go back” and correct it in
the same update step.

Vi1 = pvy — oV fx, + pvg) Annoying, usually we want

update in terms of ', V f ()
Tip1 = & + Vit

Change of variables Ty = 4 + pv; and

rearrange:

Vi1 = pup — aV f(Fy) dx = compute gradient(x)

~ 3 old v = v

Fepr =T = puek (Ll | 7005y Learning rate + ox
=& + Vg1 + p(vip — vr) X 4= -rho * old v + (1 + rho) * v

27 /96

Alternative optimization methods

4 — o

— SGD+Momentum

Nesterov

28/96

‘ "IEXAS AsM

NIVERSITY

Alternative optimization methods

Added element-wise scaling of the gradient based on the historical sum of
squares in each dimension

grad squared = @
while ~ :
AdaGrad dx = compute gradient(x)
grad squared += dx -~ dxl
x -= learning rate - dx / (np.sgrt(grad squared) - Z. 7)

V

grad squared =

while 7w
RMSProp dx_= compute gradient(x)
Igrad squared = decay rate ' grad squared + (decay rate) ~ dx * dx]
x -= learning_rate - dx / (np.sqrt{grad_squared) - *: 7)

29/96

Alternative optimization methods

— SGD+Momentum

RMSProp

30/96

B | TEXAS AsM

UNIVERSITY

Alternative optimization methods

Combination of RMSProp and Momentum

first moment =
second moment =

while
dx = compute gradient(x)
first moment = betal * first moment -+ (- betal) ° dx
Second moment - beta second moment + [- betaZ) . dx ' dx
X learning rate * first moment / {(np.sqrt(second moment} +

yy | AdaGrad / RMSProp

31/96

T | TEXAS s

VERSITY

Alternative optimization methods

Issue with noisy trajectories that diverge from optima
— SGD
m— SGD+Momentum
RMSProp

== Adam

y

32/96

"‘F" "I‘FXAS AsM

IVERSITY

Alternative optimization methods

Gradient term is not computed from current parameter
position x;

Gradient term is computed using the current position and
momentum Xx; + pv;

While the gradient term always points in the right direction,
the momentum term may not

If the momentum term points in the wrong direction or
overshoots, the gradient can still "go back” and correct it in
the same update step.

Vi1 = pvy — oV fx, + pvg) Annoying, usually we want

update in terms of ', V f ()
Tip1 = & + Vit

Change of variables Ty = 4 + pv; and

rearrange:

Vi1 = pup — aV f(Fy) dx = compute gradient(x)

~ 3 old v = v

Fepr =T = puek (Ll | 7005y Learning rate + ox
=& + Vg1 + p(vip — vr) X 4= -rho * old v + (1 + rho) * v

33/96

Alternative optimization methods

® Adam is a good default choice

® A more informed selection of the optimization method can be done
through hyper-parameter tuning

34/96

i | TEXAS ASM

UNIVERSITY

Overview

® Deep neural networks
[]
[]

Convolutional neural networks

35/96

I
»
-

M ‘ TEXAS A&M

Convolutional neural networks

® Similar to regular neural networks
® made up of neurons, each with an input and an activation
function
® have weights and biases to be learned
® have a loss function on the last (fully-connected) layer
® Explicit assumption that the inputs are images
® vastly reduce the amount of parameters in the network

2

36/96

TEXAS A&M

UNIVERSITY

Convolutional neural networks

® Grayscale image (1-channel)

® 2d-matrix

® cach pixel ranges from 0 to 255 - 0: black, 255: white
® Color image (3-channel, RGB)

® three 2d-matrices stacked over each other
® cach with pixel values ranging between 0 and 255

37/96

i ‘ TEXAS AsM

IVERSITY

Convolutional neural networks

® 1000 x 1000 image, 1M hidden units
— 10'? parameters

® Since spatial correlation is local, we
can significantly simplify this

38/96

Convolutional neural networks

® 1000 x 1000 image, 1M hidden units,
10 x 10 filter size — 108 parameters

® Since spatial correlation is local, we
can significantly simplify this

39/96

Convolutional neural networks

® Stationarity: Statistics are similar at different locations

® Share the same parameters across different locations

L || RS

40/96

Convolutional neural networks

® |et us assume filter is an “eye”
detector

® How can we make the detection robust
to the exact location of the eye?

® By pooling (e.g., max or average)
filter responses at different locations
we gain robustness to the exact spatial
location of features

41/96

‘ "IEXAS AsM

NIVERSITY

Convolutional neural networks: The convolution operation

® Convolution is the mathematical operation that implements filtering
® Given an input image x[m, n] and an impulse response h[m, n] (filter
or kernel), the convolution output can be written as

yIm, ol = x[m, n « blm,n] = S5 S5 x[i.jlhlm —i,n

Jj=—00 i=—00
1 2 3 2] -13]-20 [-17
4 5 6 0 0 0 -18|-24 [-18
7 8 9 1 2 1 13|20 |17
Input Kernel Output

http://www.songho.ca/dsp/convolution/convolution2d_example.html

42/96

http://www.songho.ca/dsp/convolution/convolution2d_example.html

'TF)QAS AsM

UNIVERSITY

Convolutional neural networks: The convolution operation

H0.0]= {-1-1] A[L1]+2{0,~1] H{01]+ A{1-1] Z{~11]
+x[-1,0]- A[1,0]+2[0,0]- 40,01+ A{1,0] 4[~1,0]
0 +x[-11] 111+ 200,1] O ~1]+ {11] H[~1-1]
=0.140 240140 . 041. 042040 (- +4- (-2)+5. (-1 =-13

${1.0] = {0~ 1]- M11]+ A{L—-1] A 011+ [2-1]- A[~1]1]
+2{0,0]. A[1,0]+ 1,0]. 4 0,0]+ x{2,0]- {—10]

0 +2{01]- ML=+ A{11] A0~ 1]+ 2[2,1]- H{~1-1]

1 2] 3 =0 140-240-141.04+2. 043 044 (=D +5.(-2) +6 . (1) =—20
4| 5| 6

7| 8| 9

http://www.songho.ca/dsp/convolution/convolution2d_example.html 3D convolution:

https://cs231n.github.io/assets/conv-demo/index.html

43/96

http://www.songho.ca/dsp/convolution/convolution2d_example.html
https://cs231n.github.io/assets/conv-demo/index.html

et

Convolutional neural networks: The convolution operation

Ay
T

44 /96

TEXAS A&M

UNIVERSITY

Convolutional neural networks: The convolution operation

o|lo|e|lo|o|e|eo|o|e|e

o|lo|o|leo|o|e|e|o|e|e

o|o|o|o|oooooo
olo|o|leo o|le|le|e|e|e

45/96

Convolutional neural networks: The convolution operation

0|0|O0
o|1|0 -
0|0|O0
Original Identical image

46 /96

Convolutional neural networks: The convolution operation

Original

Shifted left
By 1 pixel

47 /96

Convolutional neural networks: The convolution operation

O| =

Blur (with a mean filter)

48/96

Convolutional neural networks: The convolution operation

0 1111
1 —
O| = —|1 1|1 -—
9 i
0 0 1111 ’
IP ‘n
o Sharpening filter
Original (accentuates edges)

49/96

i ‘ TEXAS AsM

NIVERSITY

Convolutional neural networks: The convolution operation

before

50/96

"‘F‘ "I‘EXAS AEM

NIVERSITY

Convolutional neural networks: The convolution operation

Input 1-d convolution with Input
Hidden « filters: 1 Hidden
O Wy A/ « filter size: 2 O

OX\ » stride: 2

1-d convolution with

« filters: 1

« filter size: 2 -
« stride: 1

51/96

i ‘ TEXAS AsM

IVERSITY

Convolutional neural networks: The convolution operation

1xL
0
o 1-d convolution with
| &ddén o+ filters: 2 Vf"‘C’S(N)
N N\ « filter size: 2
- T~ » stride: 2
- ' + padding: 1 .
/ ' > # units (L)

N

\

52/96

TEXAS A&M

UNIVERSITY

Convolutional neural networks: The convolution operation

HXxW # filters HxWxC

_ # filters
N\ # units (W)

— —— x #units (W)

— # units (H) - # units (H)

w f=(w,h) L f=wWw,hC)

https://www.nervanasys.com/convolutional-neural-networks/

Also check:
http://cs231in.github.io/assets/conv-demo/index.html

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ (figure 6)

53/96

https://www.nervanasys.com/convolutional-neural-networks/
http://cs231n.github.io/assets/conv-demo/index.html
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Convolutional neural networks: The convolution operation

® Depth: the number of filters we use for the convolution operation

® Stride: the number of pixels by which we slide our filter matrix over
the input

® Zero-padding: padding the input matrix with zeros around the
border, so that we can apply the filter to bordering elements of our
input image matrix

54 /96

Convolutional neural networks: Example

Case Study: AlexNet

[Krizhevsky et al. 2012]

Architecture:

MAX POOL1

MAX POOL2

Max POOL3

Assuming no zero-padding and weight sharing throughout the entire image

55 /96

iI,',, ‘ "I‘FXAS AsM

IVERSITY

Convolutional neural networks: Example

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 96 11x11 filters applied at stride 4

=>
Q: what is the output volume size? Hint: (227-11)/4+1 = 55

56 /96

i ‘ TEXAS AsM

IVERSITY

Convolutional neural networks: Example

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 96 11x11 filters applied at stride 4
=>

Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

57/96

i ‘ TEXAS AsM

IVERSITY

Convolutional neural networks: Example

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>

Output volume [55x55x96]

Parameters: (11*11*3)*96 = 35K

58 /96

i ‘ TEXAS AsM

IVERSITY

Convolutional neural networks: Max-pooling

Reduces the dimensionality of each feature map but retains the
most important information

Can be of different types: Max, Average, Sum etc.

Makes the input representations (feature dimension) smaller and
more manageable

Promotes an almost scale invariant representation of the image

Max(1,1,5,6)=6

max pool with 2x2 fillers
and stride 2 8

A O ® &

y

Rectified Feature Map

59/96

i ‘ TEXAS AsM

IVERSITY

Convolutional neural networks: Example

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

60 /96

iI,',, ‘ "I‘FXAS AsM

IVERSITY

Convolutional neural networks: Example

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

61/96

iI,',, ‘ "I‘FXAS AsM

IVERSITY

Convolutional neural networks: Example

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Output volume: 27x27x96
Parameters: 0!

62/96

i | TEXAS ASM

UNIVERSITY

Convolutional neural networks: Final fully connected layer

® Traditional multilayer perceptron

® Yields the classification/regression result

Connections and weights
not shown here

cop t0 0l
Lol (000 4 possible outputs
boat 1094
bire 10 C2;

63/96

Convolutional neural networks: Putting it all together

Step 1: Initialize weights

Step 2: Take first image as input and go through the forward
propagation step (convolution, ReLU and pooling operations along
with forward propagation in the fully connected layer) and finds the
output probabilities for each class

Step 3: Calculate the total error at the output layer

Step 4: Use backpropagation to update the weights, which are
adjusted in proportion to their contribution to the total error

Step 5: Repeat Steps 1-4 for all train images

oat (1)
Bird (0)

Feature Extraction from Image Classification

64 /96

Convolutional neural networks: Examples

RELU RELU RELU RELU RELU RELU
CONVlCONV CONV | CONV CONVlCONVl FC
v

-—

65/96

Convolutional neural networks: Examples

Pooling.
Layer2

Convolution
Layer2

Pooling.
Lajer1

Convolution
Layer 1

Input Layer

66 /96

L || RS

Convolutional neural networks: Hyperparameter tuning

Learning rate: how much to update the weight during optimization

Number of epochs: number of times the entire training set pass
through the neural network

Batch size: the number of samples in the training set for weight
update

Activation function: the function that introduces non-linearity to
the model (e.g. sigmoid, tanh, ReLU, etc.)

Number of hidden layers and units

Weight initialization: e.g., uniform distribution

Dropout for regularization: probability of dropping a unit
Optimization method: optimization method to learn the weights
(e.g., Adam, RMSProp)

We can perform or search over all parameters

67 /96

TEXAS A&M

UNIVERSITY

Overview

® Deep neural networks
[]
[]

Recurrent neural networks

[The content for the following slides has been summarized from Li, Johnson, & Yeung, Stanford CSCE 231]

68 /96

RI,',; TEXAS AsM

IVERSITY

Recurrent neural networks: Motivation

® Networks with feedback loops (recurrent edges)

e Qutput at current time step depends on current input as well as
previous state (via recurrent edges)

one to one one to many many to one many to many

J o OUl D i
] DD] DDD LR
0 0 000 DOoC

® one-to-one: e.g., image classification (image — user ID)
® one-to-many: e.g., image captioning (image — sequence of words)

® many-to-one: e.g., sentiment classification (sequence of words —
emotion)

® many-to-many: e.g., machine translation (e.g., sequence of words
— sequence of words)

69/96

i ‘ TEXAS AsM

NIVERSITY

Recurrent neural networks: Representation

We can process a sequence of vectors x by
applying a recurrence formula at every time step:

hy

fw

(

hi1

new state

/
j

old state

some function
with parameters W

9 xt)

N

The same function and the same set of parameters are used at every time

step

70/96

L || RS

Recurrent neural networks: Representation

The state consists of a single “hidden” vector h:

hy = fW(ht—la xt)

|

hy = tanh(Wyhe_y + W)

Y = Whyht

71/96

Recurrent neural networks: Representation

y

fW _> fW _> fW _> ..._’hT
W/ ’

The same function and the same set of parameters are used at every time
step.

72/96

Recurrent neural networks: Representation

73/96

‘ TEXAS AsM

NIVERSITY

Recurrent neural networks: Representation

Character-level language model
During training: learning sequence of characters

target chars: “e” N “l “o”
1.0 05 0.1 0.2
2.2 03 0.5 -1.5
tput |
oulputiaYer | 50 4.0 1.9 0.1
4.1 1.2 -1.1 2.2
4 4
T vy
0.3 1.0 0.1 |w hn|-03
hidden layer | .01 = 0.3 = 05| ~ » 09
0.9 0.1 -0.3 0.7
P Tw
1] 0 0 0
i 0 1 (] 0
tla
input layer 0 0 1 1
0 0 0 0
input chars: “h” “e” " ‘"

74/96

| TEXAS AaM
Recurrent neural networks: Representation
Character-level language model
During testing: sample characters feed back to model one at a time

Sample

Softmax

output layer

nidden layer

input layer

input chars: “h"

75/96

L || RS

Recurrent neural networks: Learning

Forward through entire sequence to

Backpropagation through time potidmaihibsaemishiied

g .

SN T SO N N ot t ot

B o e e P e e e e e e e e e e | e

SR SO TR R R I ot G SR R R R A

ne
ngl
|
ng
|
ng
N

-
>

\J

76 /96

L || RS

Recurrent neural networks: Learning

Truncated Backpropagation through time
Loss

//(‘ f I \ \\ Run forward and backward
through chunks of the

sequence instead of whole

| L] NN sequence
G SR S B A N
I T R R N

-

77/96

L || RS

Recurrent neural networks: Learning

Truncated Backpropagation through time
Loss

VAR IR ER U U N Carry hidden states
forward in time forever,
but only backpropagate
NN N T R T Y S S R R e for some smaller

number of steps

A\
\j

78/96

L || RS

Recurrent neural networks: Learning

Truncated Backpropagation through time
Loss

-
>
-
-
>
-
-
-
-
b
b
-
>
-
-
F,+
-
-
-

-
>
-
-
]
-
-
>
-
N
.
>
N
}.{
>
N
-
—
-

79/96

i | TEXAS AM
Recurrent neural networks: Learning
Text generation
THE SONNETS
by William Shakespeare y
— E¥

Andsee thy oo

hen tho st 3 ol

80/96

et

Recurrent neural networks: Learning

Text generation

t first: tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astal f ogoh eoase rrranbyne 'nhthnee e
atlirst plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

train more

“Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more
Aftair fall unsuch that the hall for Prince Velzonski's that me of

her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

train more

"Why do what that day,” replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

81/96

Recurrent neural networks: Learning

Music generation

Music and Art Generation using Machine Learning | Curtis Hawthorne | TEDxMountainViewHighSchool

https://www.youtube.com/watch?v=Q-Qq8ipUHEIL

82/96

https://www.youtube.com/watch?v=Q-Qq8ipUHEI

i | TEXAS ASM

UNIVERSITY

Recurrent neural networks: Learning

Image captioning

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.

Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei

Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

83/96

i ‘ TEXAS AsM

IVERSITY

Recurrent neural networks: Learning

Image captioning

Recurrent Neural Network

“straw” “hat” END
Ui

W

START “straw” “hat”

84/96

image

conv-64
conv-64

maxpool

conv-128
conv-128
maxpool

conv-256
conv-256

maxpool

conv-512
conv-512
maxpool

conv-512
conv-512
maxpool

FC-4096
FC-4096

Recurrent neural networks: Learning

Image captioning

X0
<STA
RT>

straw

<START>

test image

sample
<END> token
=> finish.

85/96

Recurrent neural networks: Learning

Image captioning

Image Captlonlng Example Results

A cat sitting on a A cat is sitting on a tree A dog is running in the A white teddy bear sitting in
suitcase on the floor branch grass with a frisbee the grass
GRS AT & "
- ﬁ 2 -
AD ‘FE
“n/ ——
£ EY
Two people walking on A tennis player in action Two giraffes standing in a A man riding a dirt bike on
the beach with surfboards on the court grassy field a dirt track

TEXAS A&M

UNIVERSITY

86 /96

B Tt

Recurrent neural networks: Learning

H H Bengio et al, "Leaming long-term dependencies with gradient descent
anitlia ra |ent ow is diffculf, IEEE Transactions on Neural Nelworks, 1964
Pascanu et al,"On the dificuly of training recurrent neural networks”.
1cML 2013
— —tanh W— — @ W4> — tanh — == tanh
hy — stack H—— h, = stk \—» h, — svack H——o hy, — s(ack H—o h,
x1 XZ X3 X4

) _ Largest singular value > 1:| _ Gradient clipping: Scale

Computing gradient [Exploding gradients gradient if its norm is too big

of h, involves many .
grad_norm = np.sum(grad * grad)

factors of W Largest singular value < 1: \f grad_norm > threshold:

(and repeated tanh) Vanishing gradients grad ‘= (threshold / grad_norm)

87/96

TFXAS AEM

IVERSITY

Recurrent neural networks: Learning

H H Bengio ot al, “Leaming long-term dependencies with gradient descent
anilla radient Flow R EES Trmaions o i Koot 958
PoscansataL On s Aty o g oot ol et
oo
W— — am W— — anh W-—' = tanh W— —= tanh
Lo | |
——* stack - * stack e —t—* stack g - * stack -
hy h, h, h, h,
)(1 X2 XJ X4

Largest singular value > 1:
Computing gradient Exploding gradients
of h involves many
factors of W Largest singular value < 1:
(and repeated tanh) | vanishing gradients

— Change RNN architecture

88/96

i | TEXAS ASM

UNIVERSITY

Overview

® Deep neural networks
[)
[]

Long short term memory neural networks

[The content for the following slides has been summarized from

https://colah.github.io/posts/2015-08-Understanding-LSTMs/]

89/96

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

L || RS

Long short term memory neural networks: Representation

A memory consists of an explicit memory and gating units
which regulate the information flow into and out of the memory.

RNN:
® ® ()
1 f
A A
|
(2
LSTM:
@
T
A A
|
&

90/96

Long short term memory neural networks: Representation

The cell state represents the memory of the network. The LSTM removes
or adds information to the cell state, regulated by structures called gates.

Ciy

e

91/96

Long short term memory neural networks: Representation

Decides what information we will throw away from the
previous cell state via a sigmoid function.

fe=0Wy-[hi-1, 2] + by)

92/96

Long short term memory neural networks: Representation

Decides what information from the current state we will
store to the cell state. The sigmoid determined which input elements
that will be updated. The tanh determines the new candidate values.

ir =0 (Wi [he—1, @] + b;)
C, = tanh(We - [hi—1, 2] + be)

93/96

Long short term memory neural networks: Representation

Update cell state based on the forget gate and input
gate layers.

va

Ci1
% 3
f-tT itr%% Cy=fixCiq +ipx ét

94/96

Long short term memory neural networks: Representation

Provides an output based on the updated cell state and the
current input.

va

Ci1
% 3
f-tT itr%% Cy=fixCiq +ipx ét

95/96

iI,',, ‘ "IEXAS AsM

NIVERSITY

What have we learnt so far

DNNs allow hierarchical representations learned from raw data
Challenges in terms of training — pretraining

® deep belief networks
® autoencoders

Convolutional neural networks — image

® convolution: local image properties
® weight sharing: stationarity
® max-pooling: robustness in the representation and reduced cost

Additional links https://cs231n.github.io/convolutional-networks/

96 /96

https://cs231n.github.io/convolutional-networks/

