CSCE 633: Machine Learning

Lecture 8
Overview

• Deep neural networks
 • Motivation & Challenges
 • Unsupervised pretraining: Deep belief networks & autoencoders
 • (Supervised) fine-tuning
 • Alternative optimization methods
 • Convolutional neural networks
 • Recurrent neural networks
 • Long short term memory neural networks

[Contents of the following slides have been summarized from the NIPS 2010 & CVPR 2012 Deep Learning Tutorials, and the Stanford CS231 class by Drs. Li, Johnson, & Yeung]
Overview

- Deep neural networks
 - Motivation & Challenges
 - Unsupervised pretraining: Deep belief networks & autoencoders
 - (Supervised) fine-tuning
 - Alternative optimization methods
- Convolutional neural networks
- Recurrent neural networks
- Long short term memory neural networks
Deep neural networks: Motivation

Traditional recognition

- **pixels** → **classifier** → “bus”?
- **edges** → **classifier** → “bus”?
- **SIFT/HOG**
- **edges** → **histogram** → **classifier** → “bus”?
- **edges** → **histogram** → **K-means/sparse code** → **classifier** → “bus”?

But what’s next?

- Deeper
- Shallower
Deep neural networks: Motivation

Deep Learning

- Specialized components, domain knowledge required
- Generic components (“layers”), less domain knowledge
- Repeat elementary layers => Going deeper
- End-to-end learning
- Richer solution space

“bus”?
Deep neural networks: Motivation

<table>
<thead>
<tr>
<th>Model</th>
<th>Layers</th>
<th>Year</th>
<th>Dataset</th>
</tr>
</thead>
<tbody>
<tr>
<td>AlexNet</td>
<td>8</td>
<td>2012</td>
<td>ILSVRC</td>
</tr>
<tr>
<td>VGG</td>
<td>19</td>
<td>2014</td>
<td>ILSVRC</td>
</tr>
<tr>
<td>GoogleNet</td>
<td>22</td>
<td>2014</td>
<td>ILSVRC</td>
</tr>
</tbody>
</table>

...
Deep neural networks: Motivation

- Deep Representations might allow for a hierarchy or representation
 - Non-local generalization
 - Comprehensibility
- Multiple levels of latent variables allow combinatorial sharing of statistical strength
- Deep architectures work well (vision, audio, NLP, etc.)!
Deep neural networks: Motivation

- Learn features from data
- Use differentiable functions that produce features efficiently
- End-to-end learning: no distinction between feature extractor and classifier
- “Deep” architectures: cascade of simpler non-linear modules
Deep neural networks: Motivation

- Natural progression from low level to high level structure as seen in natural complexity
- Easier to monitor what is being learnt and to guide the machine to better subspaces
- A good lower level representation can be used for many distinct tasks

Feature representation

- 1st layer “Edges”
- 2nd layer “Object parts”
- 3rd layer “Objects”
- Pixels
Deep neural networks: Motivation

- Multi-task learning
- Unsupervised training

![Diagram showing multi-task learning and shared intermediate representation]
Deep neural networks: Challenges

- Memory is used to store input data, weight parameters and activations as an input propagates through the network
- Activations from a forward pass must be retained until they can be used to calculate the error gradients in the backwards pass
- Example: 50-layer neural network
 - 26 million weight parameters, 16 million activations in the forward pass
 - 168MB memory (assuming 32-bit float)

Parallelize computations with GPU (graphics processing units)
Deep neural networks: Challenges

- Deep networks trained with backpropagation (without unsupervised pretraining) perform worse than shallow networks
- Gradient is progressively getting more dilute
 - Weight correction is minimal after moving back a couple of layers
- High risk of getting "stuck" to local minima
- In practice, a small portion of data is labelled

Perform pretraining to mitigate this issue

Example error rates with and without pretraining

<table>
<thead>
<tr>
<th></th>
<th>train.</th>
<th>valid.</th>
<th>test</th>
</tr>
</thead>
<tbody>
<tr>
<td>DBN, unsupervised pre-training</td>
<td>0%</td>
<td>1.2%</td>
<td>1.2%</td>
</tr>
<tr>
<td>Deep net, auto-associator pre-training</td>
<td>0%</td>
<td>1.4%</td>
<td>1.4%</td>
</tr>
<tr>
<td>Deep net, supervised pre-training</td>
<td>0%</td>
<td>1.7%</td>
<td>2.0%</td>
</tr>
<tr>
<td>Deep net, no pre-training</td>
<td>.004%</td>
<td>2.1%</td>
<td>2.4%</td>
</tr>
<tr>
<td>Shallow net, no pre-training</td>
<td>.004%</td>
<td>1.8%</td>
<td>1.9%</td>
</tr>
</tbody>
</table>

(Bengio et al., NIPS 2007)
Overview

- Deep neural networks
 - Unsupervised pretraining: Deep belief networks & autoencoders
- Convolutional neural networks
- Recurrent neural networks
- Long short term memory neural networks
Deep neural networks: Unsupervised Pretraining

• This idea came into play when research studies found that a DNN trained on a particular task (e.g. object recognition) can be applied on another domain (e.g. object subcategorization) giving state-of-the-art results

• 1st part: Greedy layer-wise unsupervised pre-training
 • Each layer is pre-trained with an unsupervised learning algorithm
 • Learning a nonlinear transformation that captures the main variations in its input (the output of the previous layer)

• 2nd part: Supervised fine-tuning
 • The deep architecture is fine-tuned with respect to a supervised training criterion with gradient-based optimization
 • We will examine the deep belief networks and stacked autoencoders

Unusual form of regularization: minimizing variance and introducing bias towards configurations of the parameter space that are useful for unsupervised learning
Deep neural networks: Unsupervised Pretraining

Without pre-training

With pre-training

[Source: Erhan et al., 2010]
Deep neural networks: Unsupervised Pretraining

- Pretraining is implemented by stacking several layers of Restricted Boltzmann Machines (RBM) in a greedy manner

- Assuming joint distribution between hidden \(h_i \) and observed variables \(x_j \) with parameters \(W, b, c \)

\[
P(x, h) \propto \exp(h^T W x + b^T x + c^T h)
\]

\[
P(x|h) = \prod_j P(x_j|h), \quad P(x_j = 1|h) = \text{sigmoid}(b_j + \sum_i W_{ij} h_i)
\]

\[
P(h|x) = \prod_i P(h_i|x), \quad P(h_i = 1|x) = \text{sigmoid}(c_i + \sum_j W_{ij} x_j)
\]

- RBM trained by approximate stochastic gradient descent

- This representation is extended to all hidden layers

- The RBM parameters correspond to the parameters of the feed-forward multi-layer neural network
Deep neural networks: Unsupervised Pretraining

- Step 1: Construct an RBM with an input and hidden layer and train to find $W^{(1)}$
- Step 2: Stack another hidden layer on top of the RBM to form a new RBM
 - Fix W^1. Assume $h^{(1)}$ as input. Train to find $W^{(2)}$.
- Step 3: Continue to stack layers and find weights $W^{(3)}$, etc.
Deep neural networks: Unsupervised Pretraining

- Unsupervised algorithm that tries to learn an approximation of the identity function $h_{W,b}(x) \approx x$
- Trivial problem unless we place constraints on the network, such as by limiting the number of hidden units, we can discover interesting structure about the data
e.g. if some of the input features are correlated, then this algorithm will be able to discover some of those correlations

$$a^{(i)} = f(W_{i1}^{(1)} x_1 + W_{i2}^{(1)} x_2 + \ldots + b_i^{(1)})$$

- Trained using back-propagation and additional sparsity constraints
- Can be also used for feature transformation

Deep neural networks: Unsupervised Pretraining

Input: x_1, \ldots, x_n
Features I: $H_1^{(1)}, \ldots, H_1^{(n)}$
Output: $\hat{x}_1, \ldots, \hat{x}_n$

Input: $h_1^{(0)}, \ldots, h_1^{(n)}$
Features II: $H_1^{(0)}, \ldots, H_1^{(n)}$
Output: $\hat{h}_1^{(0)}, \ldots, \hat{h}_1^{(n)}$

$P(y = 0 \mid x)$
$P(y = 1 \mid x)$
$P(y = 2 \mid x)$

$P(y = 0 \mid x)$
$P(y = 1 \mid x)$
$P(y = 2 \mid x)$
Deep neural networks: Unsupervised Pretraining

• Capture a “hierarchical grouping” of the input
• First layer learns a good representation of input features (e.g. edges)
• Second layer learns a good representation of the patterns in the first layer (e.g. corners), etc.

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders
Overview

• Deep neural networks
 •
 •

• (Supervised) fine-tuning
 •
 •
 •
 •
 •

Deep neural networks: Fine-tuning

- Taking advantage of labelled data from large (publicly available) datasets, e.g., VGG16
- Tweak the parameters of an already trained network so that it adapts to the new task at hand
- Initial layers → learn general features
- Last layers → learn features more specific to the task of interest
- Fine-tuning freezes the first layers, and relearns weights from the last
Overview

• Deep neural networks
 • Motivation & Challenges
 • Unsupervised pretraining: Deep belief networks & autoencoders
 • (Supervised) fine-tuning
 • Alternative optimization methods
 • Convolutional neural networks
 • Recurrent neural networks
 • Long short term memory neural networks
Alternative optimization methods

- Gradient becomes zero as we increase the # layers
- Local optima and saddle points become more common in high dimensions
Alternative optimization methods

- Movement through the parameter space is averaged over multiple time steps
- Momentum speeds up movement along directions of strong improvement (loss decrease) and also helps the network avoid local minima

SGD

\[
x_{t+1} = x_t - \alpha \nabla f(x_t)
\]

```python
while True:
    dx = compute_gradient(x)
    x += learning_rate * dx
```

SGD+Momentum

\[
v_{t+1} = \rho v_t + \nabla f(x_t)
\]

\[
x_{t+1} = x_t - \alpha v_{t+1}
\]

```python
vx = 0
while True:
    dx = compute_gradient(x)
    vx = rho * vx + dx
    x += learning_rate * vx
```

- Build up “velocity” as a running mean of gradients
- Rho gives “friction”; typically \(\rho = 0.9 \) or 0.99
Alternative optimization methods

Issue with noisy trajectories that diverge from optima

Gradient Noise
Alternative optimization methods

- Gradient term is not computed from current parameter position x_t
- Gradient term is computed using the current position and momentum $x_t + \rho v_t$
- While the gradient term always points in the right direction, the momentum term may not
- If the momentum term points in the wrong direction or overshoots, the gradient can still "go back" and correct it in the same update step.

\[
\begin{align*}
v_{t+1} &= \rho v_t - \alpha \nabla f(x_t + \rho v_t) \\
x_{t+1} &= x_t + v_{t+1}
\end{align*}
\]

Annoying, usually we want update in terms of $x_t, \nabla f(x_t)$

Change of variables $\tilde{x}_t = x_t + \rho v_t$ and rearrange:

\[
\begin{align*}
v_{t+1} &= \rho v_t - \alpha \nabla f(\tilde{x}_t) \\
\tilde{x}_{t+1} &= \tilde{x}_t - \rho v_t + (1 + \rho)v_{t+1} \\
&= \tilde{x}_t + v_{t+1} + \rho(v_{t+1} - v_t)
\end{align*}
\]
Alternative optimization methods

- SGD
- SGD+Momentum
 - Nesterov
Alternative optimization methods

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

AdaGrad

```python
grad_squared = 0
while True:
    dx = compute_gradient(x)
    grad_squared += dx * dx
    x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```

RMSProp

```python
grad_squared = decay_rate * grad_squared + (1 - decay_rate) * dx * dx
x -= learning_rate * dx / (np.sqrt(grad_squared) + 1e-7)
```
Alternative optimization methods

- SGD
- SGD+Momentum
- RMSProp
Alternative optimization methods

Combination of RMSProp and Momentum

```python
first moment =
second moment =
while ...
    dx = compute gradient(x)
    first moment = beta1 * first moment + (1 - beta1) * dx
        second moment = beta2 * second moment + (1 - beta2) * dx * dx
    x = learning rate * first moment / (np.sqrt(second moment) + ...)
```

AdaGrad / RMSProp
Alternative optimization methods

Issue with noisy trajectories that diverge from optima

- SGD
- SGD+Momentum
- RMSProp
- Adam
Alternative optimization methods

- Gradient term is not computed from current parameter position x_t
- Gradient term is computed using the current position and momentum $x_t + \rho v_t$
- While the gradient term always points in the right direction, the momentum term may not
- If the momentum term points in the wrong direction or overshoots, the gradient can still ”go back” and correct it in the same update step.

\[
\begin{align*}
v_{t+1} &= \rho v_t - \alpha \nabla f(x_t + \rho v_t) \\
x_{t+1} &= x_t + v_{t+1}
\end{align*}
\]

Annoying, usually we want update in terms of $x_t, \nabla f(x_t)$

Change of variables $\tilde{x}_t = x_t + \rho v_t$ and rearrange:

\[
\begin{align*}
v_{t+1} &= \rho v_t - \alpha \nabla f(\tilde{x}_t) \\
\tilde{x}_{t+1} &= \tilde{x}_t - \rho v_t + (1 + \rho)v_{t+1} \\
&= \tilde{x}_t + v_{t+1} + \rho(v_{t+1} - v_t)
\end{align*}
\]

dx = compute gradient(x)
old_v = v
v = rho * v - learning rate * dx
x += -rho * old_v + (1 + rho) * v
Alternative optimization methods

- Adam is a good default choice
- A more informed selection of the optimization method can be done through hyper-parameter tuning
Overview

- Deep neural networks
 -...
 -...

- Motivation & Challenges
 - Unsupervised pretraining: Deep belief networks & autoencoders
 - (Supervised) fine-tuning
 - Alternative optimization methods

- Convolutional neural networks
 -...
 -...
 -...

- Recurrent neural networks
 -...
 -...
 -...
 - Long short term memory neural networks
Convolutional neural networks

• Similar to regular neural networks
 • made up of neurons, each with an input and an activation function
 • have weights and biases to be learned
 • have a loss function on the last (fully-connected) layer
• Explicit assumption that the inputs are images
 • vastly reduce the amount of parameters in the network
Convolutional neural networks

• Grayscale image (1-channel)
 • 2d-matrix
 • each pixel ranges from 0 to 255 - 0: black, 255: white
• Color image (3-channel, RGB)
 • three 2d-matrices stacked over each other
 • each with pixel values ranging between 0 and 255
Convolutional neural networks

- 1000×1000 image, $1M$ hidden units $\rightarrow 10^{12}$ parameters
- Since spatial correlation is local, we can significantly simplify this
Convolutional neural networks

- 1000 × 1000 image, 1M hidden units, 10 × 10 filter size → 10^8 parameters
- Since spatial correlation is local, we can significantly simplify this
Convolutional neural networks

- Stationarity: Statistics are similar at different locations
- Share the same parameters across different locations
Convolutional neural networks

- Let us assume filter is an “eye” detector
- How can we make the detection robust to the exact location of the eye?
- By pooling (e.g., max or average) filter responses at different locations we gain robustness to the exact spatial location of features
Convolutional neural networks: The convolution operation

- Convolution is the mathematical operation that implements filtering.
- Given an input image $x[m, n]$ and an impulse response $h[m, n]$ (filter or kernel), the convolution output can be written as:

$$y[m, n] = x[m, n] * h[m, n] = \sum_{j=-\infty}^{\infty} \sum_{i=-\infty}^{\infty} x[i, j] h[m - i, n - j]$$

$$
\begin{array}{c|c|c}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
\end{array} \quad
\begin{array}{c|c|c}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1 \\
\end{array} \quad
\begin{array}{c|c|c}
-13 & -20 & -17 \\
-18 & -24 & -18 \\
13 & 20 & 17 \\
\end{array}
$$

Input \quad Kernel \quad Output

http://www.songho.ca/dsp/convolution/convolution2d_example.html
Convolutional neural networks: The convolution operation

\[
\begin{align*}
\gamma_{0,0} &= x[-1, -1] \cdot h[1, 1] + x[0, -1] \cdot h[0, 1] + x[1, -1] \cdot h[-1, 1] \\
&\quad + x[-1, 0] \cdot h[1, 0] + x[0, 0] \cdot h[0, 0] + x[1, 0] \cdot h[-1, 0] \\
&\quad + x[-1, -1] \cdot h[-1, -1] + x[0, 0] \cdot h[0, 0] + x[1, 1] \cdot h[1, 1] \\
&= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 + 0 \cdot (-1) + 4 \cdot (-2) + 5 \cdot (-1) = -13
\end{align*}
\]

\[
\begin{align*}
\gamma_{1,0} &= x[0, -1] \cdot h[1, 1] + x[1, -1] \cdot h[0, 1] + x[2, -1] \cdot h[-1, 1] \\
&\quad + x[0, 0] \cdot h[1, 0] + x[1, 0] \cdot h[0, 0] + x[2, 0] \cdot h[-1, 0] \\
&\quad + x[0, 1] \cdot h[-1, -1] + x[1, 1] \cdot h[0, -1] + x[2, 1] \cdot h[1, -1] \\
&= 0 \cdot 1 + 0 \cdot 2 + 0 \cdot 1 + 0 \cdot 0 + 1 \cdot 0 + 2 \cdot 0 + 3 \cdot 0 + 4 \cdot (-1) + 5 \cdot (-2) + 6 \cdot (-1) = -20
\end{align*}
\]

http://www.songho.ca/dsp/convolution/convolution2d_example.html 3D convolution:

https://cs231n.github.io/assets/conv-demo/index.html
Convolutional neural networks: The convolution operation
Convolutional neural networks: The convolution operation

\[
H \ast F = G
\]
Convolutional neural networks: The convolution operation

Original

\[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array} \]

= Identical image
Convolutional neural networks: The convolution operation

Original

\[
\begin{array}{ccc}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

=

Shifted left
By 1 pixel
Convolutional neural networks: The convolution operation

Original $\ast \frac{1}{9} \begin{array}{ccc} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{array} =$ Blur (with a mean filter)
Convolutional neural networks: The convolution operation

Original

\[
\begin{pmatrix}
0 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{pmatrix} - \frac{1}{9} \begin{pmatrix}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}
\] = Sharpening filter
(accentuates edges)
Convolutional neural networks: The convolution operation

before

after
Convolutional neural networks: The convolution operation

1-d convolution with
- filters: 1
- filter size: 2
- stride: 2

1-d convolution with
- filters: 1
- filter size: 2
- stride: 1
Convolutional neural networks: The convolution operation

1-d convolution with
- filters: 2
- filter size: 2
- stride: 2
- padding: 1

filters (N)
units (\tilde{L})
depends on stride and padding!
Convolutional neural networks: The convolution operation

Also check:

http://cs231n.github.io/assets/conv-demo/index.html

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ (figure 6)
Convolutional neural networks: The convolution operation

- **Depth**: the number of filters we use for the convolution operation
- **Stride**: the number of pixels by which we slide our filter matrix over the input
- **Zero-padding**: padding the input matrix with zeros around the border, so that we can apply the filter to bordering elements of our input image matrix
Convolutional neural networks: Example

Case Study: AlexNet

[Krizhevsky et al. 2012]

Architecture:

MAX POOL1

MAX POOL2

Max POOL3

Assuming no zero-padding and weight sharing throughout the entire image
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Q: what is the output volume size? Hint: \((227-11)/4+1 = 55\)
Convolutional neural networks: Example

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4

=>

Output volume **[55x55x96]**

Q: What is the total number of parameters in this layer?
Convolutional neural networks: Example

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: (11*11*3)*96 = 35K
Convolutional neural networks: Max-pooling

- Reduces the dimensionality of each feature map but retains the most important information
- Can be of different types: Max, Average, Sum etc.
- Makes the input representations (feature dimension) smaller and more manageable
- Promotes an almost scale invariant representation of the image
Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: \((55-3)/2+1 = 27\)
Convolutional neural networks: Example

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?
Convolutional neural networks: Example

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!
Convolutional neural networks: Final fully connected layer

- Traditional multilayer perceptron
- Yields the classification/regression result
Convolutional neural networks: Putting it all together

- **Step 1**: Initialize weights
- **Step 2**: Take first image as input and go through the forward propagation step (convolution, ReLU and pooling operations along with forward propagation in the fully connected layer) and finds the output probabilities for each class
- **Step 3**: Calculate the total error at the output layer
- **Step 4**: Use backpropagation to update the weights, which are adjusted in proportion to their contribution to the total error
- **Step 5**: Repeat Steps 1-4 for all train images
Convolutional neural networks: Examples
Convolutional neural networks: Examples
Convolutional neural networks: Hyperparameter tuning

- Learning rate: how much to update the weight during optimization
- Number of epochs: number of times the entire training set pass through the neural network
- Batch size: the number of samples in the training set for weight update
- Activation function: the function that introduces non-linearity to the model (e.g. sigmoid, tanh, ReLU, etc.)
- Number of hidden layers and units
- Weight initialization: e.g., uniform distribution
- Dropout for regularization: probability of dropping a unit
- Optimization method: optimization method to learn the weights (e.g., Adam, RMSProp)

We can perform grid or randomized search over all parameters
Overview

- Deep neural networks
 - Motivation & Challenges
 - Unsupervised pretraining: Deep belief networks & autoencoders
 - (Supervised) fine-tuning
 - Alternative optimization methods
- Convolutional neural networks
- Recurrent neural networks

[The content for the following slides has been summarized from Li, Johnson, & Yeung, Stanford CSCE 231]
Recurrent neural networks: Motivation

- Networks with feedback loops (recurrent edges)
- Output at current time step depends on current input as well as previous state (via recurrent edges)

- one-to-one: e.g., image classification (image → user ID)
- one-to-many: e.g., image captioning (image → sequence of words)
- many-to-one: e.g., sentiment classification (sequence of words → emotion)
- many-to-many: e.g., machine translation (e.g., sequence of words → sequence of words)
Recurrent neural networks: Representation

We can process a sequence of vectors \mathbf{x} by applying a recurrence formula at every time step:

$$
\mathbf{h}_t = f_W(\mathbf{h}_{t-1}, \mathbf{x}_t)
$$

- new state
- old state
- some function with parameters W

The same function and the same set of parameters are used at every time step.
Recurrent neural networks: Representation

The state consists of a single "hidden" vector h:

$$h_t = f_W(h_{t-1}, x_t)$$

$$h_t = \tanh(W_{hh}h_{t-1} + W_{xh}x_t)$$

$$y_t = W_{hy}h_t$$
Recurrent neural networks: Representation

The same function and the same set of parameters are used at every time step.
Recurrent neural networks: Representation
Recurrent neural networks: Representation

Character-level language model

During training: learning sequence of characters
Recurrent neural networks: Representation

Character-level language model
During testing: sample characters feed back to model one at a time
Recurrent neural networks: Learning

Backpropagation through time

Forward through entire sequence to compute loss, then backward through entire sequence to compute gradient
Recurrent neural networks: Learning

Truncated Backpropagation through time

Run forward and backward through chunks of the sequence instead of whole sequence
Recurrent neural networks: Learning

Truncated Backpropagation through time

Carry hidden states forward in time forever, but only backpropagate for some smaller number of steps
Recurrent neural networks: Learning

Truncated Backpropagation through time
Recurrent neural networks: Learning

Text generation

THE SONNETS

by William Shakespeare

From fairest creatures we desire increase,
That thereby beauty's rose might never die,
But as the riper should by time decrease,
His tender heir might bear his memory:
But thou, contrariwise, growest too bright,
For'st the light's flame with self-substantial fuel,
Making a famine where abundance lies,
Thy self thy self to thy sweet self so enwrath
That time theiev now the world's fresh ornament
And only herald in the giddy spring,
Within thine own bud blazonst the content,
And render charul malice away in ppegardance:
Pay the world, or else this glutton be,
To eat the world's due, by the grave and thee.

When forty winters shall besiege thy brow,
And dig deep trenches in thy beauty's field,
 Thy youth's proud livery so gazed on now,
Will be a tatter'd weed of small worth held;
Then being asked, where all thy beauty lies,
Where all the treasure of thy house doth sit,
To say within thine own deep-seek'd eyes,
Wore an all-seeing livery, and distress'd praise
How much more praise deserv'd thy beauty's use,
If thou could'st answer "This fair child of mine
Shall sum my count, and make my old excuse;"
Proving his beauty by succession thine:
This were to be new made when thou art old,
And see thy blood warm when thou feel'st it cold.
Recurrent neural networks: Learning

Text generation

at first:

tyntd-iafhatawiaoihrdemot lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e plia tkrlgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoenns lng

train more

"Tmont thithey" fomesscerliund
Keushey. Thom here
sheulke, ammerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome
cianiogennc Phe lism thond hon at. MeiDimorotion in ther thize."

train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort
how, and Gogition is so overelical and ofter.

train more

"Why do what that day," replied Natasha, and wishing to himself the fact the
princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.
Recurrent neural networks: Learning

Music generation

https://www.youtube.com/watch?v=Q-q8ipUHEI
Recurrent neural networks: Learning

Image captioning

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick
Recurrent neural networks: Learning

Image captioning

Recurrent Neural Network

```
START "straw" "hat"

h_t
W_{bb} W_{ob}

y_t
W_{ob}

END
```

CNN

"straw" "hat"
Recurrent neural networks: Learning

Image captioning

```
image
conv-64
conv-64
maxpool
conv-128
conv-128
maxpool
conv-256
conv-256
maxpool
conv-512
conv-512
maxpool
conv-512
conv-512
maxpool
FC-4096
FC-4096
<START>
```

```
y0

h0

x0 <START>

<END> token => finish.

y1

h1

straw

y2

h2

hat

```

test image
Recurrent neural networks: Learning

Image captioning

Image Captioning: Example Results

- A cat sitting on a suitcase on the floor
- A cat is sitting on a tree branch
- A dog is running in the grass with a frisbee
- A white teddy bear sitting in the grass
- Two people walking on the beach with surfboards
- A tennis player in action on the court
- Two giraffes standing in a grassy field
- A man riding a dirt bike on a dirt track
Recurrent neural networks: Learning

Vanilla RNN Gradient Flow

Computing gradient of h_0 involves many factors of W (and repeated tanh)

Largest singular value > 1: Exploding gradients

Largest singular value < 1: Vanishing gradients

Gradient clipping: Scale gradient if its norm is too big

```
grad_norm = np.sum(grad * grad)
if grad_norm > threshold:
    grad *= (threshold / grad_norm)
```
Recurrent neural networks: Learning

Vanilla RNN Gradient Flow

Computing gradient of h_0 involves many factors of W (and repeated tanh)

Largest singular value > 1: **Exploding gradients**

Largest singular value < 1: **Vanishing gradients** → Change RNN architecture

Bengio et al., “Learning long-term dependencies with gradient descent is difficult”, IEEE Transactions on Neural Networks, 1994
Overview

• Deep neural networks
 •
 •
 •
 •
 •
 •
 •
 •
 •
 •

• Long short term memory neural networks

[The content for the following slides has been summarized from https://colah.github.io/posts/2015-08-Understanding-LSTMs/]
Long short term memory neural networks: Representation

A memory consists of an explicit memory and gating units which regulate the information flow into and out of the memory.

RNN:

LSTM:
The cell state represents the memory of the network. The LSTM removes or adds information to the cell state, regulated by structures called gates.
Long short term memory neural networks: Representation

Decides what information we will throw away from the previous cell state via a sigmoid function.

\[f_t = \sigma (W_f \cdot [h_{t-1}, x_t] + b_f) \]
Long short term memory neural networks: Representation

Decides what information from the current state we will store to the cell state. The sigmoid determined which input elements that will be updated. The \textit{tanh} determines the new candidate values.

\[
i_t = \sigma (W_i \cdot [h_{t-1}, x_t] + b_i)
\]

\[
\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C)
\]
Long short term memory neural networks: Representation

Update cell state based on the forget gate and input gate layers.

\[C_t = f_t \cdot C_{t-1} + i_t \cdot \tilde{C}_t \]
Long short term memory neural networks: Representation

Provides an output based on the updated cell state and the current input.

\[C_t = f_t * C_{t-1} + i_t * \tilde{C}_t \]
What have we learnt so far

• DNNs allow hierarchical representations learned from raw data
• Challenges in terms of training \rightarrow pretraining
 • deep belief networks
 • autoencoders
• Convolutional neural networks \rightarrow image
 • convolution: local image properties
 • weight sharing: stationarity
 • max-pooling: robustness in the representation and reduced cost
• Additional links https://cs231n.github.io/convolutional-networks/