
CSCE 633: Machine Learning

Lecture 8

Overview

• Deep neural networks
• Motivation & Challenges
• Unsupervised pretraining: Deep belief networks &

autoencoders
• (Supervised) fine-tuning
• Alternative optimization methods
• Convolutional neural networks
• Recurrent neural networks
• Long short term memory neural networks

[Contents of the following slides have been summarized from the NIPS 2010 & CVPR 2012 Deep Learning

Tutorials, and the Stanford CS231 class by Drs. Li, Johnson, & Yeung]

2 / 96

Overview

• Deep neural networks
• Motivation & Challenges
• Unsupervised pretraining: Deep belief networks &

autoencoders
• (Supervised) fine-tuning
• Alternative optimization methods
• Convolutional neural networks
• Recurrent neural networks
• Long short term memory neural networks

3 / 96

Deep neural networks: Motivation

4/ 96

Deep neural networks: Motivation

5/ 96

Deep neural networks: Motivation

6/ 96

Deep neural networks: Motivation

Why go deep?

• Deep Representations might allow for a hierarchy or representation
• Non-local generalization
• Comprehensibility

• Multiple levels of latent variables allow combinatorial sharing of
statistical strength

• Deep architectures work well (vision, audio, NLP, etc.)!

7 / 96

Deep neural networks: Motivation

Key ideas of (deep) neural networks

• Learn features from data

• Use di↵erentiable functions that produce features e�ciently

• End-to-end learning: no distinction between feature extractor and
classifier

• “Deep” architectures: cascade of simpler non-linear modules

8 / 96

Deep neural networks: Motivation

Di↵erent levels of abstraction:Hierarchical learning

• Natural progression from low
level to high level structure as
seen in natural complexity

• Easier to monitor what is being
learnt and to guide the
machine to better subspaces

• A good lower level
representation can be used for
many distinct tasks

9 / 96

Deep neural networks: Motivation

Shared low-level representations

• Multi-task learning

• Unsupervised training

10 / 96

Deep neural networks: Challenges

High memory requirements

• Memory is used to store input data, weight parameters and
activations as an input propagates through the network

• Activations from a forward pass must be retained until they can be
used to calculate the error gradients in the backwards pass

• Example: 50-layer neural network
• 26 million weight parameters, 16 million activations in the

forward pass
• 168MB memory (assuming 32-bit float)

Parallelize computations with GPU (graphics processing units)

11 / 96

Deep neural networks: Challenges

Backpropagation does not work well

• Deep networks trained with backpropagation (without unsupervised
pretraining) perform worse than shallow networks

• Gradient is progressively getting more dilute
• Weight correction is minimal after moving back a couple of

layers

• High risk of getting “stuck” to local minima

• In practice, a small portion of data is labelled

Perform pretraining to mitigate this issue
Example error rates with and without pretraining

12 / 96

Overview

• Deep neural networks
• Motivation & Challenges
• Unsupervised pretraining: Deep belief networks &

autoencoders
• (Supervised) fine-tuning
• Alternative optimization methods
• Convolutional neural networks
• Recurrent neural networks
• Long short term memory neural networks

13 / 96

Deep neural networks: Unsupervised Pretraining

• This idea came into play when research studies found that a DNN
trained on a particular task (e.g. object recognition) can be applied
on another domain (e.g. object subcategorization) giving
state-of-the-art results

• 1st part: Greedy layer-wise unsupervised pre-training
• Each layer is pre-trained with an unsupervised learning

algorithm
• Learning a nonlinear transformation that captures the main

variations in its input (the output of the previous layer)

• 2nd part: Supervised fine-tuning
• The deep architecture is fine-tuned with respect to a

supervised training criterion with gradient-based optimization

• We will examine the deep belief networks and stacked autoencoders

Unusual form of regularization: minimizing variance and introducing bias

towards configurations of the parameter space that are useful for

unsupervised learning

14 / 96

Deep neural networks: Unsupervised Pretraining

Without pre-training With pre-training

[Source: Erhan et al., 2010]

15 / 96

Deep neural networks: Unsupervised Pretraining

Deep Belief Networks (Hinton et al. 2006)

• Pretraining is implemented by stacking several layers of Restricted
Boltzmann Machines (RBM) in a greedy manner

• Assuming joint distribution between hidden hi and observed
variables xj with parameters W,b, c
P(x,h) / exp(hTWx+ bTx+ cTh)
P(x|h) =

Q
j P(xj |h), P(xj = 1|h) = sigmoid(bj +

P
i Wijhi)

P(h|x) =
Q

i P(hi |x), P(hi = 1|x) = sigmoid(ci +
P

j Wijxj)

• RBM trained by approximate stochastic gradient descent

• This representation is extended to all hidden layers

• The RBM parameters correspond to the parameters of the
feed-forward multi-layer neural network

16 / 96

Deep neural networks: Unsupervised Pretraining

Deep Belief Networks (Hinton et al. 2006)

• Step 1: Construct an RBM with an input and hidden layer and train
to find W(1)

• Step 2: Stack another hidden layer on top of the RBM to form a
new RBM

• Fix W1. Assume h(1) as input. Train to find W(2).

• Step 3: Continue to stack layers and find weights W(3), etc.

Step 1 Step 2 Step 3

17 / 96

Deep neural networks: Unsupervised Pretraining

Autencoder

• Unsupervised algorithm that tries to learn an approximation of the
identity function hW,b(x) ⇡ x

• Trivial problem unless we place constraints on the network, such as
by limiting the number of hidden units, we can discover interesting
structure about the data
e.g. if some of the input features are correlated, then this algorithm
will be able to discover some of those correlations

• ↵(i)
j = f (W (1)

i1 x1 +W (1)
i2 x2 + . . .+ b(1)i)

• Trained using back-propagation and
additional sparsity constraints

• Can be also used for feature
transformation

[http://ufldl.stanford.edu/wiki/index.php/Autoencoders_

and_Sparsity]

18 / 96

http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity
http://ufldl.stanford.edu/wiki/index.php/Autoencoders_and_Sparsity

Deep neural networks: Unsupervised Pretraining
Stacked Autencoders for pretraining

19 / 96

Deep neural networks: Unsupervised Pretraining

Stacked Autencoders for pretraining

• Capture a “hierarchical grouping” of the input

• First layer learns a good representation of input features (e.g. edges)

• Second layer learns a good representation of the patterns in the first
layer (e.g. corners), etc.

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

20 / 96

http://ufldl.stanford.edu/wiki/index.php/Stacked_Autoencoders

Overview

• Deep neural networks
• Motivation & Challenges
• Unsupervised pretraining: Deep belief networks &

autoencoders
• (Supervised) fine-tuning
• Alternative optimization methods
• Convolutional neural networks
• Recurrent neural networks
• Long short term memory neural networks

21 / 96

Deep neural networks: Fine-tuning

• Taking advantage of labelled data from large (publicly available)
datasets, e.g., VGG16

• Tweak the parameters of an already trained network so that it
adapts to the new task at hand

• Initial layers ! learn general features

• Last layers ! learn features more specific to the task of interest

• Fine-tuning freezes the first layers, and relearns weights from the last

22 / 96

Overview

• Deep neural networks
• Motivation & Challenges
• Unsupervised pretraining: Deep belief networks &

autoencoders
• (Supervised) fine-tuning
• Alternative optimization methods
• Convolutional neural networks
• Recurrent neural networks
• Long short term memory neural networks

23 / 96

Alternative optimization methods

Problems with stochastic gradient descent

• Gradient becomes zero as we increase the # layers

• Local optima and saddle points become more common in high
dimensions

24 / 96

Alternative optimization methods
Stochastic gradient descent + Momentum

• Movement through the parameter space is averaged over
multiple time steps

• Momentum speeds up movement along directions of strong
improvement (loss decrease) and also helps the network avoid
local minima

25 / 96

Alternative optimization methods

Stochastic gradient descent + Momentum

Issue with noisy trajectories that diverge from optima

26 / 96

Alternative optimization methods
Stochastic gradient descent + Nesterov Momentum

• Gradient term is not computed from current parameter
position xt

• Gradient term is computed using the current position and
momentum xt + ⇢vt

• While the gradient term always points in the right direction,
the momentum term may not

• If the momentum term points in the wrong direction or
overshoots, the gradient can still ”go back” and correct it in
the same update step.

27 / 96

Alternative optimization methods

Stochastic gradient descent + Nesterov Momentum

28 / 96

Alternative optimization methods

AdaGrad & RMSProp

Added element-wise scaling of the gradient based on the historical sum of

squares in each dimension

29 / 96

Alternative optimization methods

RMSProp

30 / 96

Alternative optimization methods

Adam

Combination of RMSProp and Momentum

31 / 96

Alternative optimization methods

Adam

Issue with noisy trajectories that diverge from optima

32 / 96

Alternative optimization methods
Stochastic gradient descent + Nesterov Momentum

• Gradient term is not computed from current parameter
position xt

• Gradient term is computed using the current position and
momentum xt + ⇢vt

• While the gradient term always points in the right direction,
the momentum term may not

• If the momentum term points in the wrong direction or
overshoots, the gradient can still ”go back” and correct it in
the same update step.

33 / 96

Alternative optimization methods

• Adam is a good default choice

• A more informed selection of the optimization method can be done
through hyper-parameter tuning

34 / 96

Overview

• Deep neural networks
• Motivation & Challenges
• Unsupervised pretraining: Deep belief networks &

autoencoders
• (Supervised) fine-tuning
• Alternative optimization methods
• Convolutional neural networks
• Recurrent neural networks
• Long short term memory neural networks

35 / 96

Convolutional neural networks

• Similar to regular neural networks
• made up of neurons, each with an input and an activation

function
• have weights and biases to be learned
• have a loss function on the last (fully-connected) layer

• Explicit assumption that the inputs are images
• vastly reduce the amount of parameters in the network

36 / 96

Convolutional neural networks

Image representation

• Grayscale image (1-channel)
• 2d-matrix
• each pixel ranges from 0 to 255 - 0: black, 255: white

• Color image (3-channel, RGB)
• three 2d-matrices stacked over each other
• each with pixel values ranging between 0 and 255

37 / 96

Convolutional neural networks

A fully connected neural network with image input

• 1000 ⇥ 1000 image, 1M hidden units
! 1012 parameters

• Since spatial correlation is local, we
can significantly simplify this

38 / 96

Convolutional neural networks

Idea 1: Convolution
A locally connected neural network with image input

• 1000 ⇥ 1000 image, 1M hidden units,
10 ⇥ 10 filter size ! 108 parameters

• Since spatial correlation is local, we
can significantly simplify this

39 / 96

Convolutional neural networks

Idea 2: Weight sharing

• Stationarity: Statistics are similar at di↵erent locations

• Share the same parameters across di↵erent locations

40 / 96

Convolutional neural networks

Idea 3: Max-pooling

• Let us assume filter is an “eye”
detector

• How can we make the detection robust
to the exact location of the eye?

• By pooling (e.g., max or average)
filter responses at di↵erent locations
we gain robustness to the exact spatial
location of features

41 / 96

Convolutional neural networks: The convolution operation

Example of 2D Convolution
• Convolution is the mathematical operation that implements filtering

• Given an input image x [m, n] and an impulse response h[m, n] (filter
or kernel), the convolution output can be written as

y [m, n] = x [m, n] ⇤ h[m, n] =
1P

j=�1

1P
i=�1

x [i , j]h[m � i , n � j]

http://www.songho.ca/dsp/convolution/convolution2d_example.html

42 / 96

http://www.songho.ca/dsp/convolution/convolution2d_example.html

Convolutional neural networks: The convolution operation

Example of 2D Convolution

http://www.songho.ca/dsp/convolution/convolution2d_example.html 3D convolution:

https://cs231n.github.io/assets/conv-demo/index.html

43 / 96

http://www.songho.ca/dsp/convolution/convolution2d_example.html
https://cs231n.github.io/assets/conv-demo/index.html

Convolutional neural networks: The convolution operation

Convolution operation

44 / 96

Convolutional neural networks: The convolution operation

Mean filtering

45 / 96

Convolutional neural networks: The convolution operation

Linear filters: Example

46 / 96

Convolutional neural networks: The convolution operation

Linear filters: Example

47 / 96

Convolutional neural networks: The convolution operation

Linear filters: Example

48 / 96

Convolutional neural networks: The convolution operation

Linear filters: Example

49 / 96

Convolutional neural networks: The convolution operation

Linear filters: Example

50 / 96

Convolutional neural networks: The convolution operation

Image 1d-convolution

51 / 96

Convolutional neural networks: The convolution operation

Image 1d-convolution

52 / 96

Convolutional neural networks: The convolution operation

Image 2d-convolution

https://www.nervanasys.com/convolutional-neural-networks/

Also check:

http://cs231n.github.io/assets/conv-demo/index.html

https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/ (figure 6)

53 / 96

https://www.nervanasys.com/convolutional-neural-networks/
http://cs231n.github.io/assets/conv-demo/index.html
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/

Convolutional neural networks: The convolution operation

Image 2d-convolution hyperparameters

• Depth: the number of filters we use for the convolution operation

• Stride: the number of pixels by which we slide our filter matrix over
the input

• Zero-padding: padding the input matrix with zeros around the
border, so that we can apply the filter to bordering elements of our
input image matrix

54 / 96

Convolutional neural networks: Example

Assuming no zero-padding and weight sharing throughout the entire image

55 / 96

Convolutional neural networks: Example

56 / 96

Convolutional neural networks: Example

57 / 96

Convolutional neural networks: Example

58 / 96

Convolutional neural networks: Max-pooling

Spatial Pooling (also called subsampling or downsampling)

• Reduces the dimensionality of each feature map but retains the
most important information

• Can be of di↵erent types: Max, Average, Sum etc.

• Makes the input representations (feature dimension) smaller and
more manageable

• Promotes an almost scale invariant representation of the image

59 / 96

Convolutional neural networks: Example

60 / 96

Convolutional neural networks: Example

61 / 96

Convolutional neural networks: Example

62 / 96

Convolutional neural networks: Final fully connected layer

Final fully connected layer

• Traditional multilayer perceptron

• Yields the classification/regression result

63 / 96

Convolutional neural networks: Putting it all together

• Step 1: Initialize weights

• Step 2: Take first image as input and go through the forward
propagation step (convolution, ReLU and pooling operations along
with forward propagation in the fully connected layer) and finds the
output probabilities for each class

• Step 3: Calculate the total error at the output layer

• Step 4: Use backpropagation to update the weights, which are
adjusted in proportion to their contribution to the total error

• Step 5: Repeat Steps 1-4 for all train images

64 / 96

Convolutional neural networks: Examples

65 / 96

Convolutional neural networks: Examples

66 / 96

Convolutional neural networks: Hyperparameter tuning

• Learning rate: how much to update the weight during optimization

• Number of epochs: number of times the entire training set pass
through the neural network

• Batch size: the number of samples in the training set for weight
update

• Activation function: the function that introduces non-linearity to
the model (e.g. sigmoid, tanh, ReLU, etc.)

• Number of hidden layers and units

• Weight initialization: e.g., uniform distribution

• Dropout for regularization: probability of dropping a unit

• Optimization method: optimization method to learn the weights
(e.g., Adam, RMSProp)

We can perform grid or randomized search over all parameters

67 / 96

Overview

• Deep neural networks
• Motivation & Challenges
• Unsupervised pretraining: Deep belief networks &

autoencoders
• (Supervised) fine-tuning
• Alternative optimization methods
• Convolutional neural networks
• Recurrent neural networks
• Long short term memory neural networks

[The content for the following slides has been summarized from Li, Johnson, & Yeung, Stanford CSCE 231]

68 / 96

Recurrent neural networks: Motivation

• Networks with feedback loops (recurrent edges)

• Output at current time step depends on current input as well as
previous state (via recurrent edges)

• one-to-one: e.g., image classification (image ! user ID)

• one-to-many: e.g., image captioning (image ! sequence of words)

• many-to-one: e.g., sentiment classification (sequence of words !
emotion)

• many-to-many: e.g., machine translation (e.g., sequence of words
! sequence of words)

69 / 96

Recurrent neural networks: Representation

The same function and the same set of parameters are used at every time

step

70 / 96

Recurrent neural networks: Representation

71 / 96

Recurrent neural networks: Representation

Many-to-one representation

The same function and the same set of parameters are used at every time

step.

72 / 96

Recurrent neural networks: Representation

Many-to-many representation

73 / 96

Recurrent neural networks: Representation

Example: Character-level language model
During training: learning sequence of characters

74 / 96

Recurrent neural networks: Representation

Example: Character-level language model
During testing: sample characters feed back to model one at a time

75 / 96

Recurrent neural networks: Learning

76 / 96

Recurrent neural networks: Learning

77 / 96

Recurrent neural networks: Learning

78 / 96

Recurrent neural networks: Learning

79 / 96

Recurrent neural networks: Learning

Example: Text generation

80 / 96

Recurrent neural networks: Learning

Example: Text generation

81 / 96

Recurrent neural networks: Learning

Example: Music generation

https://www.youtube.com/watch?v=Q-Qq8ipUHEI

82 / 96

https://www.youtube.com/watch?v=Q-Qq8ipUHEI

Recurrent neural networks: Learning

Example: Image captioning

83 / 96

Recurrent neural networks: Learning

Example: Image captioning

84 / 96

Recurrent neural networks: Learning

Example: Image captioning

85 / 96

Recurrent neural networks: Learning

Example: Image captioning

86 / 96

Recurrent neural networks: Learning

87 / 96

Recurrent neural networks: Learning

88 / 96

Overview

• Deep neural networks
• Motivation & Challenges
• Unsupervised pretraining: Deep belief networks &

autoencoders
• (Supervised) fine-tuning
• Alternative optimization methods
• Convolutional neural networks
• Recurrent neural networks
• Long short term memory neural networks

[The content for the following slides has been summarized from

https://colah.github.io/posts/2015-08-Understanding-LSTMs/]

89 / 96

https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Long short term memory neural networks: Representation

Central Idea: A memory consists of an explicit memory and gating units
which regulate the information flow into and out of the memory.
RNN:

LSTM:

90 / 96

Long short term memory neural networks: Representation

The cell state represents the memory of the network. The LSTM removes
or adds information to the cell state, regulated by structures called gates.

91 / 96

Long short term memory neural networks: Representation

Forget gate layer: Decides what information we will throw away from the
previous cell state via a sigmoid function.

92 / 96

Long short term memory neural networks: Representation

Input gate layer: Decides what information from the current state we will
store to the cell state. The sigmoid determined which input elements
that will be updated. The tanh determines the new candidate values.

93 / 96

Long short term memory neural networks: Representation

Update cell state: Update cell state based on the forget gate and input
gate layers.

94 / 96

Long short term memory neural networks: Representation

Output: Provides an output based on the updated cell state and the
current input.

95 / 96

What have we learnt so far

• DNNs allow hierarchical representations learned from raw data

• Challenges in terms of training ! pretraining
• deep belief networks
• autoencoders

• Convolutional neural networks ! image
• convolution: local image properties
• weight sharing: stationarity
• max-pooling: robustness in the representation and reduced cost

• Additional links https://cs231n.github.io/convolutional-networks/

96 / 96

https://cs231n.github.io/convolutional-networks/

