
CSCE 633: Machine Learning

Lecture 8



Overview

• Information entropy

• Decision Trees
• Terminology (e.g. nodes, etc) & intuition
• Entropy node splitting criterion
• Algorithm Outline
• Pruning
• Regression Trees

• Random Forests
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Information entropy

Question Suppose that we have a random variable X that represents

one’s favorite season of eating watermelon. X takes four values

{summer, fall,winter, spring}. The probability of eating watermelon for

each of the four seasons is:

P(summer) = 0.75,P(winter) = 0.05,P(spring) = 0.1,P(fall) = 0.1

We randomly select one person and ask then what is their favorite season

of eating watermelon.

A) Suppose that they have answered summer. How surprised are you?

B) Suppose that they have answered either summer, fall, winter, or

spring. How surprised are you?

C) Suppose that they have answered winter. How surprised are you?
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Information entropy

Question Suppose that we have a random variable X that represents

one’s favorite season of eating watermelon. X takes four values

{summer, fall,winter, spring}. The probability of eating watermelon for

each of the four seasons is:

P(summer) = 0.75,P(winter) = 0.05,P(spring) = 0.1,P(fall) = 0.1

We randomly select one person and ask then what is their favorite season

of eating watermelon.

A) Suppose that they have answered summer. How surprised are you?

Not much

B) Suppose that they have answered either summer, fall, winter, or

spring. How surprised are you? Not at all

C) Suppose they have answered winter. How surprised are you? A lot
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Information entropy

Suppose that we draw a letter from the above buckets.

On average how many questions do we need to ask to find out what

letter it is?
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Information entropy

For Bucket 1:

• We don’t need to ask any questions, since it only contains the letter
A.

• Average Number of Questions = 0
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Information entropy

For Buckets 2 and 3:

• Naively we could ask 4 questions

• Is the letter A? Is the letter B? Is the letter C? Is the letter D?

• Can we do better than that?
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Information entropy

For Bucket 2:

• We notice that 50% of letters are A

• We can take advantage of this by asking ”Is the letter A” in our
first question.

• If the answer to the first question is ”Yes”, then we will have found
the letter in 1 question (instead of 4).
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Information entropy
For Bucket 2:

• If the letter is A, we can find out in 1 question

• If the letter is B, we can find out in 2 questions

• If the letter is C, we can find out in 3 questions

• Average Number of Questions = 1
2 · 1 + 1

4 · 2 + 1
8 · 3 + 1

8 · 3 = 1.75
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Information entropy

For Bucket 3:

• We need 2 questions for any letter

• Average Number of Questions = 1
4 · 2 + 1

4 · 2 + 1
4 · 2 + 1

4 · 2 = 2
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Information entropy

• If we want to find out a letter drawn out of a bucket, the average
number of questions we must ask to find out what is this letter, is
the entropy of the set (if we ask our questions in the smartest
possible way).

• Entropy is a measure of uncertainty

• Entropy = 0 → no uncertainty
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Entropy for discrete distribution
Let X be a discrete random variable with {x1, . . . , xN} outcomes, each

occurring with probability p(x1), . . . , p(xN).

The information content of outcome xn is inversely proportional to its

probability, h(xn) = log 1
p(xn) = − log p(xn)

The entropy of the random variable X is the average information content
of the outcomes:

H(X ) =
N∑

n=1

p(xn) log(
1

p(xn)
) = −

N∑
n=1

p(xn) log(p(xn))

Example
no uncertainty some uncertainty high uncertainty

[Watch this: https://www.khanacademy.org/computing/computer-science/informationtheory/

moderninfotheory/v/information-entropy]
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Entropy for continuous distribution

Let X be a continuous random variable with x ∈ Ω. Its entropy is
defined as follows:

H(X ) = −
∫
x∈Ω

p(x) log(p(x))dx

Example

If X ∼ N (µ, σ2) its entropy is H(X ) = 1
2 (1 + log(2πσ2)).

The entropy depends on the variance of the Gaussian.

i.e. higher variance → higher uncertainty, and vice-versa.

Gaussians with the same σ, therefore same entropy.
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Conditional Entropy

We want to quantify how much uncertainty the realization of a random

variable Y has if another random variable X is known. Let X take the

values {x1, . . . , xM}.
The conditional entropy is defined as:

H(Y |X ) =
M∑

m=1

pX (xm)HY |X=xm(Y |X = xm)

=
M∑

m=1

pX (xm)

(
−

N∑
n=1

pY |X (yn|xm) log(pY |X (yn|xm))

)

= −
M∑

m=1

N∑
n=1

pX (xm)pY |X (yn|xm) log(pY |X (yn|xm))
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Overview
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Decision Trees

Many decisions are tree-like structures
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Decision Trees

What is a decision tree

A hierarchical data structure implementing the divide-and-conquer

strategy for decision making

Can be used for both classification & regression
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Decision Trees

A decision tree partitions the feature space

Three things to learn

• The tree structure (i.e. attributes and #branches for splitting)

• The threshold values (i.e. θi )

• The values of the leaves (i.e. A,B, . . .)
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Decision Trees

Example

We want to find a decision process for choosing a restaurant
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Decision Trees

If we split the train samples with respect to the attribute ”Patron”, we

will gain more information or minimize uncertainty regarding the outcome

(i.e., “Patrons” can find the correct outcome with less questions).
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Decision Trees

How do we measure information gain?

• Intuitively, information gain tells us how important a given attribute
is for predicting the outcome

• We will use it to decide the ordering of attributes in the nodes of a
decision tree (i.e. tree structure)

• Main idea: Gaining information reduces uncertainty

• From information theory, we have a measure of uncertainty →
entropy
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Decision Trees

Example: Choosing a restaurant

Measuring the conditional entropy on each of the “Patrons” attributes

Measuring the conditional entropy on Patrons

H(Outcome|Patron) = 2
12 × 0 + 4

12 × 0 + 6
12 × 0.9 = 0.45

“How uncertain is the Outcome with respect to attribute Patrons”
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Decision Trees

Example: Choosing a restaurant

Measuring the conditional entropy on each of the “Type” attributes

Measuring the conditional entropy on Type

H(Outcome|Type) = 2
12 × 1 + 2

12 × 1 + 4
12 × 1 + 4

12 × 1 = 1

“How uncertain is the Outcome with respect to attribute Type”
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Decision Trees

Example: Choosing a restaurant

• H(Outcome|Patron) < H(Outcome|Type),
H(Outcome|Patron) < H(Outcome|Price), ...

• The entropy of the Outcome conditioned on Patron is the lowest

• So the first split is performed with respect to Patron

• We do not split the ”None” and ”Some” nodes, since their decision
is deterministic from the train data

• Next split? We will look only at the 6 instances assigned to the
node ”Full”
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Decision Trees

Example: Choosing a restaurant

Greedily we build the tree and looks like this
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Decision Trees: Algorithm Outline

GenerateTree(X ) (Input X : training samples)

1 i := SplitAttribute(X ) (find attribute with lowest uncertainty)

2 For each branch of xi (for all values of the above attribute)

2a Find Xi falling in branch
2b GenerateTree(Xi )

SplitAttribute(X ) (Input X : training samples)

1 MinEnt := MAX

2 For all attributes Xi , i = 1, . . . ,D

2a Compute H(Y |Xi ) (entropy of outcome conditioned on attribute Xi )

2b If MinEnt > H(Y |Xi ) (current attribute Xi with lowest conditional entropy so far)

2b.i MinEnt := H(Y |Xi )
2b.ii SplitAttr := i

3 Return SplitAttr
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Decision Trees

Should we continue to split until every training sample is classified

correctly?

• We should be very careful about the depth of the tree

• Eventually, we can get all training examples right
• Is this what we want?

• The maximum depth of the tree is a hyperparameter
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Decision Trees: Pruning

Example: Choosing a restaurant

We should prune some of the leaves of the tree to get a smaller depth

• If we stop here, not all training samples are classified correctly

• How do we classify a new instance?
• We label the leaves of this smaller tree with the label of the

majority of training samples
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Decision Trees

Example: Choosing a restaurant

If we wanted to prune at this first node, we would take the following

decisions
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Decision Trees: Pruning

• Pre-Pruning
• Stop growing the tree earlier, before it perfectly classifies the

training set
• Use a pre-specified max depth

• Post-Pruning
• Grow the tree full until no training error
• Trim the nodes of the decision tree in a bottom-up fashion
• If generalization error improves after trimming, replace

sub-tree by a leaf node
• Class label of leaf node is determined from majority class of

instances in the sub-tree
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Decision Trees: Alternative splitting criteria

2-class problem

p̂, 1− p̂: frequency of class 0 and 1

• Entropy:
φ(p̂) =
−p̂ log p̂ − (1− p̂) log(1− p̂)

• Gini index:
φ(p̂) = 2p̂(1− p̂)

C-class problem

p̂1,...,p̂C : frequency of class

1, . . . ,C

• Entropy:
φ(p̂1, . . . , p̂C ) =
−
∑

c p̂c log p̂c
• Gini index:
φ(p̂1, . . . , p̂C ) =∑

c p̂c(1− p̂c)

Entropy and gini index usually provide similar results. Entropy is slightly

more expensive to calculate.
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Decision Trees: Continuous features

• For continuous features, we can try multiple splits
• e.g., if we have feature values (10, 11, 13, 14), we can split at

(10.5, 11.5, 13.5)

• Among the split positions that are possible, we select the one that
minimizes the entropy or gini index
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Regression Trees

• Similar to classification trees with some differences

• Split criterion
• Mean square error between predicted and actual value of

samples that have reached current node

• Leaf node value
• Mean (or medium) of samples that have reached the node
• Linear regression estimate on samples that have reached the

node
• Leaf node is created (splitting stops) if the current node has

“acceptable” error
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Regression Trees

Example: Regression tree
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Regression Trees

Example: Regression tree feature split
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Decision Trees

Advantages

• The models are transparent: easily interpretable by human (as long
as the tree is not too big)

• It is compact, since we only need to store the splitting criteria and
corresponding values

• Data can contain combination of continuous and discrete features

• Can handle missing data
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Overview

• Information Entropy

• Decision Trees
• Terminology (e.g. nodes, etc) & intuition
• Entropy node splitting criterion
• Algorithm Outline
• Pruning
• Regression Trees

• Random Forests
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Random Forests

• We grow many classification trees through bagging & randomization

• Bagging (Bootstrap aggregating)
• Generate independently bootstrap datasets from original data
• Run a decision tree in each one of them

• Randomize over the set of attributes
• Before growing a bootstrap decision tree
• When splitting an interior node of the classification tree

• It is recommended to build small trees

• For each sample, each tree ”votes” for a class and we perform
majority voting for final decision
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Random Forests

Advantages

• Very good performance in practice

• Runs efficiently on large data bases

• Runs efficiently on large feature sets

• Gives estimates of the most relevant variables for the problem
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What have we learnt so far
Decision Trees

• Hierarchical (tree-like) structure to perform classification/regression

• Tree structure determined by splitting criterion
• Entropy (measure of uncertainty), gini index, etc.

• Pruning
• Prevent overfitting by limiting the depth of the tree
• Avoids perfect performance on train set
• Pre/Post-pruning

• Main advantage: interpretability

Random Forests

• Tree ensemble

• Bagging & Randomization

• Good peformance in practice

Readings: Alpaydin 9.1-9.4
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