
CSCE 633: Machine Learning

Lecture 9



Overview

• Motivation for combining multiple learners

• Multi-expert combination
• Learner fusion: voting, stacked generalization
• Learner selection: mixture of experts, dynamic classifier

selection

• Multi-stage combination
• Sequential combination of learners: bagging, boosting

• Bias and variance in learning models
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Combining multiple learners

Motivation

• Each learning model comes with certain assumptions → works well
on some parts of the data, but not well in other parts

• Learning is an ill-posed problem: with finite data, each algorithm
converges to a different solution and fails under different
circumstances

• There might be different learners that perform better in different
circumstances

• Question 1: How do we generate multiple learners that complement
each other?

• Question 2: How do we combine these learners to get a final result
that performs better on the overall dataset?
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Combining multiple learners

Diverse learners

• Not any learner combination works

• We need to find a set of diverse learners that:
• differ in their decisions
• complement each other

How to increase diversity between learners?

• Different model representations (e.g. parametric & and
non-parametric)

• Different hyper-parameters of the same model

• Different input representations (e.g. facial expression and speech
characteristics for person identification)

• Different parts of data
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Combining multiple learners

Combining multiple learners to final output

• Given L learners and test input x

• dj(x): the prediction of j th learner that uses data Xj

• Final prediction
y = f (d1, . . . , dL|Φ)

where Φ are the parameters of the learners
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Combining multiple learners

Taxonomy

Multi-expert combination: parallel combination of learners

• learner fusion: all learners generate an output for all inputs, then
outputs are combined (e.g. voting)
• Voting
• Stacked generalization

• learner selection: chooses one (or few) learners for generating the
output of each input
• Mixture of experts with input-dependent weights
• Dynamic classifier selection

Multi-stage combination: sequential combination of learners

• each learner is trained based on the data that have not been learned
(enough) from the previous learner
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Multiexpert Combination: Learner selection
Voting

• Generating output as a linear combination of learners

yi =
∑
j

wjdji , wj > 0,
∑
j

wj = 1

where dij is the output of learner j for class i

• Outputs from each learner should be normalized
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Multiexpert Combination: Learner selection

Voting

• median rule: robust to outliers

• product rule: each learner has veto power (it only takes one learner
to have 0 output)

• weighted sum rule: wj can be related to accuracy of the learner or
how much the learner voted for each class (e.g. distance from
nearest training samples)
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Multiexpert Combination: Learner selection

Stacked generalization

• The outputs of the base learners define a new L-dimensional space

• The output of the system is not a linear combination of the base
learners, but it is learned through a combiner system

y = f (d1, . . . , dL|Φ)
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Multiexpert Combination: Learner selection

Stacked generalization

• The combiner learns
• The correct output given a certain output combination of the

learners
• How the learners make errors

• We would like the learners to be as diverse as possible, so that they
complement each other

• More flexible and with less bias, but adds extra parameters (and
possible higher variance), and is computationally more expensive
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Multiexpert Combination: Learner selection

Mixture of experts with input-dependent weights

• Voting method where the weights of each learner depend on the
input

y =
∑
j

wj(x)dj , wj(x) > 0,
∑
j

wj(x) = 1

where dij is the output of learner i for class i

• Gating network whose outputs are the weights of the experts
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Multiexpert Combination: Learner selection

Example: Mixture of experts in logistic regression

• p(y |x) =
∑K

k=1 πk(x)pk(y |x)

• Left figure: true probabilities of red/blue classes in the input space

• Center figure: Class probabilities from single logistic regression
→ ∼0.5 probability per class for each sample

• Right figure: Class probabilities from mixture of two logistic
regression models
→ higher probabilities assigned to the correct labels
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Conditional Mixture Models

Mixtures of linear regression models

• K linear regression models

• Each with weight parameter wk

• All governed by the same precision β for the Gaussian noise

• yk = wT
k x + ε, ε ∼ N (0, 1/β)

• We want to estimate θ = [{πk}Kk=1, {wk}Kk=1, β]

• Likelihood of k th component yk ∼ N (wk
Tx, β−1)

• Likelihood of final output

p(y |θ) =
K∑

k=1

πkN (y |wT
k x, β−1)

• Joint estimation of model parameters and hidden variables →
Expectation Maximization
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Conditional Mixture Models

• Original data-likelihood

log p(y|θ) =
N∑

n=1

log

(
K∑

k=1

πkN (yn|wT
k xn, β

−1)

)

• Set of binary variables Z = {zn}, znk ∈ {0, 1}: all znk are zero,
expect the one that indicates the linear regression model responsible
to generating prediction for the nth data point

• Data-likelihood after integrating hidden variables

log p(y,Z|θ) =
N∑

n=1

K∑
k=1

znk log{πkN (yn|wT
k xn, β

−1)}
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Conditional Mixture Models

• E-step: Evaluating responsibilities

γnk = p(znk = 1|xn,θ
old ) =

πkN (yn|wT
k xn, β

−1)∑K
k=1 πkN (yn|wT

k xn, β−1)

• M-step: Estimating model parameters

πk =
1

N

N∑
n=1

γnk

wk = (XTRkX)−1XTRky , Rk = diag(γnk) (weighted least squares)

1

β
=

1

N

N∑
n=1

K∑
k=1

γnk(yn −wT
k xn)2
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Conditional Mixture Models

upper figure: input data and a mixture of two linear regression models (initial, 30 EM iterations, 50 EM iterations)

lower figure: estimated responsibilities (initial, 30 EM iterations, 50 EM iterations)
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Multiexpert Combination: Learner selection

Dynamic classifier selection

Given a test input

• Find the K nearest training samples Xk to the input

• Look at the accuracies of all learners d1, . . . , dL in Xk

• Chose the learner d∗ that performs the best on Xk

• Report the final result of the test input using learner d∗
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Overview

• Motivation for combining multiple learners

• Multi-expert combination
• Learner fusion: voting, stacked generalization
• Learner selection: mixture of experts, dynamic classifier

selection

• Multi-stage combination
• Sequential combination of learners: bagging, boosting

• Conditional Mixture Models: Linear regression

• Bias and variance in learning models
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Bagging

• Train learners on different parts of the data D
• Generate L different samples Di using bootstrap

• Draw N samples randomly with replacement

• Train a model Ci on each Di

• Combine the decision from all models to a final one C∗
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Bagging

• If the training set is very unstable (i.e., small changes in different
samples cause significant changes in the output), then bagging is
likely to help
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Boosting

• Multistage learning: each learner is trained on the data that have
not been learned from the previous one

• We actively generate complementary base-learners by training the
next learner on the mistakes of the previous learners

• We use weak learners to get complex decision boundaries, i.e.
learners with accuracy slightly more than 1/2

• We will example Adaboost (Adaptive Boosting), which is a modified
version of the original boosting algorithm
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Boosting: Adaboost

Algorithm Outline

• Input: N samples {xn, yn}, yn ∈ {−1, 1}
• Each sample is assigned a weight, initialized at w1(n) = 1

N , ∀n
• For t = 1, . . . ,T

• Step 1: Train a weak classifier ht(x) based on current weights
wt(n) by minimizing the weighted classification error

εt =
∑
n

wt(n)I[yn 6= ht(xn)]

• Step 2: Calculate contribution of classifier t: βt = log 1−εt
εt• Update weights wt+1(n) = wt(n) exp (βt I (yn 6= ht(xn))) and

normalize them s.t.
∑

n wt(n) = 1

• The final output is h(x) = sign (
∑

t βtht(x))
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Boosting: Adaboost

Example: 10 data points

• Base classifier h(·): either horizontal or vertical lines

• The data points are clearly not linear separable

• In the beginning, all data points have equal weights (the size of “+”
and “−” markers is the same)
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Boosting: Adaboost

Example: Round 1 (t=1)

• 3 misclassified (with circles): ε1 = 0.3→ β1 = 0.42

• Weights recomputed: the 3 misclassified data points receive larger
weights
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Boosting: Adaboost

Example: Round 2 (t=2)

• 3 misclassified (with circles): ε2 = 0.21→ β2 = 0.65 Note that
ε2 6= 0.3 as those 3 data points have weights less than 1/10

• Weights recomputed: the 3 misclassified data points receive larger
weights. The data points classified correctly on round t = 1 receive
much smaller weights as they have been it consistently classified
correctly.

28 / 42



Boosting: Adaboost

Example: Round 3 (t=3)

• 3 misclassified (with circles): ε3 = 0.14→ β3 = 0.92

• Note that those previously correctly classified data points are now
misclassified. However, we might be lucky on this as if they have
been consistently classified correctly, then this round?s mistake is
probably not a big deal.
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Boosting: Adaboost

Example: Combining all classifiers

• All data points are now classified correctly
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Boosting: Adaboost

Nonlinear basis learned by boosting

• Compute sign[f1(x)], sign[f2(x)], . . .

• Combine into a linear classification model

y = sign

{∑
t

βtsign[ft(x)]

}

• Equivalently, each stage learns a nonlinear basis φt(x) = sign[ft(x)]
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Generalization error, bias, and variance

• Generalization error: The error on unseen data, test error
• Bias: The error from wrong or oversimplified model assumptions

• Underfitting relates to high bias
• Variance: The error from sensitivity to small fluctuations in training

data
• Overfitting relates to high variance

• Noise: The irreducible error inherent to the problem itself
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Generalization error, bias, and variance

• In supervised machine learning problems we want to find the
association between the input x and output y

• Assuming random noise, we have: y = f (x) + ε

• Noise is a random variable with zero mean and variance σ2
ε

• E[ε] = 0 and var(ε) = σ2
ε

• In practice, we do not know f or ε, but we can estimate them.
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Generalization error, bias, and variance

• A supervised learning algorithm finds function f̂ which approximates
f , therefore y ≈ f̂ (x)

• Generalization error: The error on unseen data, test error,
E[(y − f̂ (x))2]

• Bias: The error from wrong or oversimplified model assumptions,
the average prediction (over different realizations of training data)
for a given test point, bias[f̂ (x)] = E[f̂ (x)]− f (x)

• Variance: The error from sensitivity to small fluctuations in training
data, the mean squared deviation of f̂ (x) from its expected value
E[f̂ (x)] over different realizations of training data,
var(f̂ (x)) = E[(f̂ (x)− E[f̂ (x)])2]

• Noise: The irreducible error inherent to the problem itself, σ2
ε

E[(y − f̂ (x)2] = bias[f̂ (x)]2 + var(f̂ (x)) + σ2
ε

https://towardsdatascience.com/

the-bias-variance-tradeoff-8818f41e39e9
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Tradeoff between bias and variance

Regression example

• Data generated from f (x) = 1
2x +

√
max(0, x)− cosx + 2

• We randomly generate 1000 data points
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Tradeoff between bias and variance

Regression example

• We will fit polynomial regressions of varying degree d ,
f̂ (x) = w0 + w1x + w2x

2 + . . .+ wdx
d

• We randomly choose 20 points (out of the 1,000) to train our
polynomial regression models

• We repeat the experiment 6 times
• Blue circles: test samples
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Tradeoff between bias and variance

Regression example

• The deviation of f̂ (x) from f (x) on average (i.e., bias), is larger for
more simplistic models, since our assumptions are not as
representative of the underlying true relationship f

• A more complex model is much more sensitive to small fluctuations
in the training data
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Tradeoff between bias and variance

Regression example

Increasing polynomial degree Increasing regularization
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Tradeoff between bias and variance

How to compute bias and variance in a given dataset?

• Input dataset D

• Create B variants {D1, . . . ,DB} of the original data D
• Pick data samples (x, y) randomly from D and add it to Db

• For each variant Db

• Split the data in Db into training Tb and testing Ub
• Train model on Tb, test on Ub

• For each sample (x, y) of the original data D we have many
predictions h1(x), . . . , hn(x) coming from the variants Db, to which
sample (x, y) was in the test set

• Bias for sample (x, y): h1(x)+...+hn(x)
n − y

• Variance for sample (x, y):

1
N

√
(h1(x)− ĥ(x))2 + . . .+ (hn(x)− ĥ(x))2

ĥ(x) = h1(x)+...+hn(x)
n
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Tradeoff between bias and variance

How to compute bias and variance in a given dataset?

• By measuring the bias and variance on a problem, we can determine
how to improve our model
• If bias is high, we might want to have a more complex model
• If variance is high, we might want to reduce the complexity

• Steps taken to fight one can end up worsening the other!

41 / 42



What have a learned so far

• Inherent trade-off between bias and variance in learning

• Combining multiple learners
• Learner fusion: voting, stacked generalization
• Learner selection: mixture of experts, dynamic classifier

selection

• Combination of multiple learners can decrease final variance

• Learners must be diverse

• Readings: Alpaydin 17.6-17.7
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